测试_根据位置经纬度返回最近的Geohash

本文介绍了一种基于地理编码(Geohash)的算法,用于分析特定区域的订单需求量及司机接单可能性。通过从数据库中提取历史订单数据,计算各地理编码位置的订单量占比,进而推荐给司机最可能接单的地点。该算法涉及地理编码生成、数据库操作及数据处理技术。
# 现在要做:
# 2:取Geohash的前N位
# 3:计算前位Geohash的demand
#4 返回离司机最近的最有可能接单的Geohash位置和demand

from pygeohash import encode, decode
import plotly
import plotly.plotly as pyf
import plotly.graph_objs as go
import numpy as np
import pandas as pd
import math
from matplotlib.path import Path
import numpy as np
import plotly.offline as of
import plotly.graph_objs as go
import plotly.plotly as py
import numpy as np
import pandas as pd
import folium
import webbrowser
from folium.plugins import HeatMap
import datetime
import time
import pymysql.cursors
import decimal
import geohash

def geo_demand(geo_top_number):  #按照时间获取每个geo的接客概率
    conn = pymysql.connect(
        host='localhost',
        port=3306,
        user='root',
        passwd='xu19931026',
        db='cd_taxi',
        charset='utf8'
    )
    if conn:
        print("连接成功!")
    cursor = conn.cursor()  # 获取游标
    sql = "SELECT Geohash,number,CAST(number/(SELECT count( 0 ) FROM Order_Data where FROM_UNIXTIME(BeginTime) <'2016-11-01 24:00:00') as CHAR(15))as demand FROM (select left(`order_data`.`Geo`,%s) AS `Geohash`,count(0) AS `number` from `order_data` where (from_unixtime(`order_data`.`BeginTime`)< '2016-11-01 24:00:00') group by `Geohash` order by `number` desc) AS T;"
    cursor.execute(sql,geo_top_number)
    conn.commit()
    result = cursor.fetchall()
    df = list(result)  # 将元组转换为列表
    conn.close()  # 关闭数据库连接
    print('数据库处理数据完毕')
    geo_dict = {}  # 字典
    geo_list = []
    order_number = []
    demand = []
    for point in df:
        geo_list.append((point[0]))  # 将字符串的经纬度转换为float格式
        order_number.append(point[1])  # 50610之类的本身就是int
        demand.append(float(point[2]))  # Decimal转为float
    num = len(geo_list)  # num为数组大小
    geo_data = [[geo_list[i], demand[i]] for i in range(num)]
    geo_nb = [[geo_list[i], order_number[i]] for i in range(num)]
    return geo_data,geo_nb #返回Geohash对应的订单量与订单量百分比即demand
def get_geohash(lon, lat):
    #生成Geohash
    geo = geohash.encode(lat, lon)  # precision=9可以加精度
    return geo
def most_geo(lon,lat,geo_data,geo_top_suzi):#返回离司机最近的最有可能接单的Geohash位置和demand
    n=1
    mysql_controln=geo_top_suzi

    taxi_geo=[]
    most_geo_lis=[]
    taxi_geo1=[]
    taxi_geo1=get_geohash(lon,lat) #生成司机位置坐标的geo
    #取司机数据库里的geo字母的前N个和MySQL中取出的保持一致
    taxi_geo=taxi_geo1[0:int(geo_top_suzi)]  #取司机数据库里的geo字母的前N个和MySQL中取出的保持一致
    i=0
    while i<len(geo_data):
        if geo_data[i][0]==taxi_geo: #第0列是Geohash,如果和出租车的Geohash相等
            most_geo_lis.append([geo_data[i][0],geo_data[i][1]]) #存放相等的Geohash和对应的demand
        i+=1
    if len(most_geo_lis)==0:
        #如果不相等也即没有添加到列表这时候MySQL里的Geohash减少1
        mysql_controln-=1
        n=0
    return most_geo_lis,mysql_controln,n

if __name__ == '__main__':
    print("  开始推荐!!!  ") #'2016-11-01 24:00:00'
    print('*********************')
    print('开始获取你的坐标')
    print('*********************')
    #接下来要返回离司机最近的最有可能接单的Geohash位置和demand
    print("  请按照格式输入经度:例:104.0360900   ")
    lon = float(input("请输入:"))
    print("  请按照格式输入纬度:例:30.6226900    ")
    lat = float(input("请输入:"))
    taxi_geo1 = get_geohash(lon, lat)  # 生成司机位置坐标的geo
    a=len(taxi_geo1) #a为司机坐标生成的Geohash的长度 根据坐标生成的一般都是12位的Geohash
    print('  坐标geo已经生成:%s,geohash的长度是%d 请等候'%(taxi_geo1,a))
    geo_data, geo_nb = geo_demand(a)  # 返回MySQL里的长度为司机长度的Geohash对应的订单量与订单量百分比即demand
    most_geo_lis,mysql_controln,n = most_geo(lon,lat,geo_data,a)#查找MySQL里有没有对应的Geohash
    while n==0: #只要是n=0说明没有一样的Geohash,此时重新取数据库
        geo_data, geo_nb = geo_demand(mysql_controln) #继续计算数据库
        most_geo_lis,mysql_controln,n = most_geo(lon,lat,geo_data,mysql_controln) #继续计算mysql_controln

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值