mnist 多层感知机 及 模型保存和重新加载

本文介绍了使用多层感知机训练MNIST数据集,达到98%以上的准确率,并详细展示了如何保存和重新加载模型的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前一篇文章中写了mnist的两种训练方法,今天尝试自己搭建网络。这次,搭建了一个只含两层隐层和一层dropout层

本模型训练速度很快,且训练正确率达到了98%以上。

此外,本代码中还包含了保存模型和再次导入模型的内容。

具体代码如下:

# -*- coding: utf-8 -*-
"""
Created on Thu Aug 16 10:02:18 2018

@author: czx
"""

import tensorflow as tf 
from tensorflow.examples.tutorials.mnist import input_data 
import os

mnist = input_data.read_data_sets("E:\桌面上的文件\MNIST", one_hot=True) 

sess = tf.InteractiveSession()

#参数初始化
#产生一个符合正态分布的初始值
def weight_variable(shape): 
    initial = tf.truncated_normal(shape, mean=0, stddev=0.1) 
    #用于产生正态分布,shape为大小,mean为均值,stddev为标准差
    return tf.Variable(initial)

def bias_variable(shape): 
    initial = tf.constant(0.1, shape=shape) 
    return tf.Variable(initial)

in_unit = 784
h1_unit = 300
h2_unit = 150

w1 = weight_variable([in_unit,h1_unit])
b1 = bias_variable([h1_unit])
w2 = weight_variable([h1_unit,h2_unit])
b2 = bias_variable([h2_unit])
w3 = tf.Variable(tf.zeros([h2_unit,10]))
b3 =
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值