【人工智能-科普】图神经网络(GNN):与传统神经网络的区别与优势

图神经网络(GNN):与传统神经网络的区别与优势

在深度学习领域,神经网络已经取得了显著的成功,尤其是在处理图像、语音、文本等结构化数据方面。然而,现实世界中的许多数据并不总是能通过这些传统的神经网络模型来有效表示。例如,社交网络、知识图谱、化学分子结构等数据本质上都是图结构数据,它们具有不同于常规数据类型(如图像、文本)的连接模式。因此,为了有效地处理这些图结构数据,研究人员提出了**图神经网络(GNN)**这一新兴的深度学习模型。
在这里插入图片描述

什么是图神经网络?

图神经网络(Graph Neural Network,GNN)是一种专门处理图数据的神经网络结构。与传统神经网络(如卷积神经网络CNN和循环神经网络RNN)不同,GNN能够直接处理图结构数据,并利用图中节点之间的关系(即边)来进行特征学习和推理。

图的基本概念

在GNN中,数据通常表示为一个图(Graph)。图由节点(Node)和(Edge)组成,节点代表实体,边表示实体之间的关系。与矩阵、向量等常见的数据结构不同,图具有更强的表达能力,因为它不仅仅关注单一元素的特征,还关注元素之间的复杂关系。

例如,在社交网络中,节点可以代表用户,边则表示用户之间的友谊或关注关系。在化学分子中,节点代表原子,边代表原子之

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若北辰

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值