【基于BERT 的词嵌入 自定义模型】MAP - Charting Student Math Misunderstandings

import pandas as pd
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, BertModel
from torch.optim import AdamW
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 加载数据
df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/train.csv')
df['combined_text'] = df['QuestionText'].fillna('') + ' ' + df['StudentExplanation'].fillna('')+ ' ' + df['MC_Answer'].fillna('')

# 标签编码
le_cat = LabelEncoder()
le_mis = LabelEncoder()
df['Category_enc'] = le_cat.fit_transform(df['Category'])

# 只编码非空误解标签
df['Misconception'] = df['Misconception'].fillna('NA')
df['Misconception_enc'] = le_mis.fit_transform(df['Misconception'])  # default label for missing
#df.loc[df['Misconception'].notnull(), 'Misconception_enc'] = le_mis.fit_transform(df['Misconception'].dropna())

# 拆分训练集
train_df, val_df = train_test_split(df, test_size=0.1, random_state=42)

# 数据集类
class MultiTaskDataset(Dataset):
    def __init__(self, df, tokenizer, max_len=256):
        self.df = df
        self.tokenizer = tokenizer
        self.max_len = max_len
    
    def __len__(self):
        return len(self.df)
    
    def __getitem__(self, idx):
        row = self.df.iloc[idx]
        encoding = self.tokenizer(row['combined_text'], truncation=True, padding='max_length', max_length=self.max_len, return_tensors="pt")
        return {
            'input_ids': encoding['input_ids'].squeeze(),
            'attention_mask': encoding['attention_mask'].squeeze(),
            'label_category': torch.tensor(row['Category_enc'], dtype=torch.long),
            'label_misconception': torch.tensor(row['Misconception_enc'], dtype=torch.long)
        }

# 多任务模型定义
class MultiTaskClassifier(nn.Module):
    def __init__(self, num_cat_classes, num_mis_classes):
        super().__init__()
        self.bert = BertModel.from_pretrained('bert-base-uncased')
        self.dropout = nn.Dropout(0.3)
        self.cat_head = nn.Linear(768, num_cat_classes)
        self.mis_head = nn.Linear(768, num_mis_classes)

    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        pooled = self.dropout(outputs.pooler_output)
        cat_logits = self.cat_head(pooled)
        mis_logits = self.mis_head(pooled)
        return cat_logits, mis_logits

# 准备训练
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
train_dataset = MultiTaskDataset(train_df, tokenizer)
val_dataset = MultiTaskDataset(val_df, tokenizer)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=16)

model = MultiTaskClassifier(num_cat_classes=len(le_cat.classes_), num_mis_classes=len(le_mis.classes_)).to(device)
optimizer = AdamW(model.parameters(), lr=2e-5)
loss_fn = nn.CrossEntropyLoss(ignore_index=-1)

# 训练循环
def train_one_epoch():
    model.train()
    total_loss = 0
    for batch in train_loader:
        input_ids = batch['input_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        label_cat = batch['label_category'].to(device)
        label_mis = batch['label_misconception'].to(device)

        optimizer.zero_grad()
        cat_logits, mis_logits = model(input_ids, attention_mask)
        loss_cat = loss_fn(cat_logits, label_cat)
        loss_mis = loss_fn(mis_logits, label_mis)
        loss = loss_cat + loss_mis  # equal weight
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    print(f"Train loss: {total_loss / len(train_loader):.4f}")

# 简单评估函数(只评估 Category)
def evaluate():
    model.eval()
    preds, labels = [], []
    with torch.no_grad():
        for batch in val_loader:
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            label_cat = batch['label_category'].to(device)
            label_mis = batch['label_misconception'].to(device)
            cat_logits, cat_mis = model(input_ids, attention_mask)
            pred_cat = torch.argmax(cat_logits, dim=1)
            pred_mis = torch.argmax(cat_mis, dim=1)
            preds_cat.extend(pred_cat.cpu().numpy())
            preds_mis.extend(pred_mis.cpu().numpy())
            labels_cat.extend(label_cat.cpu().numpy())
            labels_mis.extend(label_cat.cpu().numpy())
    print("分类报告:\n", classification_report(labels_cat, preds_cat, target_names=le_cat.classes_))
    print("分类报告:\n", classification_report(labels_mis, preds_mis, target_names=le_mis.classes_))
# 训练模型
for epoch in range(3):
    print(f"Epoch {epoch+1}")
    train_one_epoch()
    evaluate()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术与健康

你的鼓励将是我最大的创作动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值