【系列11】端侧AI:构建与部署高效的本地化AI模型 第10章:LLM端侧部署

第10章:LLM端侧部署

将大语言模型(LLM)部署到端侧设备,是实现真正普及的关键一步。然而,与传统的计算机视觉模型相比,LLM的庞大体量和计算复杂度带来了前所未有的挑战。


LLM端侧部署的挑战

LLM端侧部署面临的主要挑战可以归结为两点:

  • 模型大小:即使是小型LLM,其参数量也通常高达数十亿。一个70亿参数的模型,如果使用32位浮点数存储,其体积将超过28 GB。这远超了绝大多数移动设备的可用存储空间。
  • 计算量:LLM的推理过程涉及海量的矩阵乘法运算。在每生成一个Token时,都需要进行一次完整的模型推理。这不仅需要巨大的计算能力,还会消耗大量电能,导致设备发热并迅速耗尽电量。

主流方案:Transformer家族模型轻量化

为了克服这些挑战,研究人员和开发者主要通过对LLM的核心架构Transformer进行轻量化优化。这些方法包括:

  • 模型量化:这是最有效的压缩方法。通过将32位或16位浮点数参数量化为8位甚至4位整数,可以显著减小模型体积并提升推理速度。例如,将一个70亿参数的模型量化到4位,其大小可以压缩到4 GB以内,使其能够在设备上运行。
  • 模型剪枝:虽然大型LLM中存在冗余,但由于其结构复杂,剪枝通常比在小型模型上更具挑战性。但通过
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术与健康

你的鼓励将是我最大的创作动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值