第10章:LLM端侧部署
将大语言模型(LLM)部署到端侧设备,是实现真正普及的关键一步。然而,与传统的计算机视觉模型相比,LLM的庞大体量和计算复杂度带来了前所未有的挑战。
LLM端侧部署的挑战
LLM端侧部署面临的主要挑战可以归结为两点:
- 模型大小:即使是小型LLM,其参数量也通常高达数十亿。一个70亿参数的模型,如果使用32位浮点数存储,其体积将超过28 GB。这远超了绝大多数移动设备的可用存储空间。
- 计算量:LLM的推理过程涉及海量的矩阵乘法运算。在每生成一个Token时,都需要进行一次完整的模型推理。这不仅需要巨大的计算能力,还会消耗大量电能,导致设备发热并迅速耗尽电量。
主流方案:Transformer家族模型轻量化
为了克服这些挑战,研究人员和开发者主要通过对LLM的核心架构Transformer进行轻量化优化。这些方法包括:
- 模型量化:这是最有效的压缩方法。通过将32位或16位浮点数参数量化为8位甚至4位整数,可以显著减小模型体积并提升推理速度。例如,将一个70亿参数的模型量化到4位,其大小可以压缩到4 GB以内,使其能够在设备上运行。
- 模型剪枝:虽然大型LLM中存在冗余,但由于其结构复杂,剪枝通常比在小型模型上更具挑战性。但通过