第13章:端侧多模态AI
多模态AI是人工智能的下一个前沿。它旨在让机器像人类一样,能够同时理解和处理来自不同感官的信息,例如文本、图像和语音。将这种能力部署到端侧设备,可以创造出更自然、更具沉浸感的交互体验。本章将探讨如何将不同的AI模型结合,在端侧实现多模态交互,并通过两个典型案例进行分析。
如何在端侧实现多模态交互
在端侧实现多模态AI,核心在于高效地协同多个专用模型,而不是使用一个单一的巨大模型。这种方法遵循**“小模型+高效通信”**的原则,以适应端侧设备的资源限制。
-
分离处理:将多模态任务分解为多个子任务,并分配给不同的模型。例如,一个多模态对话系统可以由以下三个模型协同工作:
-
语音识别(ASR)模型:将用户的语音输入转换为文本。
-
大语言模型(LLM):处理文本,理解用户的意图并生成相应的文本回复。
-
语音合成(TTS)模型:将LLM生成的文本转换为语音回复。
每个模型都是经过优化的端侧模型,负责其特定的任务。
-
-
数据流与通信:多模态交互的关键在于如何高效地在这些模型之间传递数据。
-
输入:用户的语音、图像或文本数据首先被捕获,并传递给相应的输入模型。
-