【系列14】端侧AI:构建与部署高效的本地化AI模型 第13章:端侧多模态AI

第13章:端侧多模态AI

多模态AI是人工智能的下一个前沿。它旨在让机器像人类一样,能够同时理解和处理来自不同感官的信息,例如文本、图像和语音。将这种能力部署到端侧设备,可以创造出更自然、更具沉浸感的交互体验。本章将探讨如何将不同的AI模型结合,在端侧实现多模态交互,并通过两个典型案例进行分析。


如何在端侧实现多模态交互

在端侧实现多模态AI,核心在于高效地协同多个专用模型,而不是使用一个单一的巨大模型。这种方法遵循**“小模型+高效通信”**的原则,以适应端侧设备的资源限制。

  • 分离处理:将多模态任务分解为多个子任务,并分配给不同的模型。例如,一个多模态对话系统可以由以下三个模型协同工作:

    1. 语音识别(ASR)模型:将用户的语音输入转换为文本。

    2. 大语言模型(LLM):处理文本,理解用户的意图并生成相应的文本回复。

    3. 语音合成(TTS)模型:将LLM生成的文本转换为语音回复。

      每个模型都是经过优化的端侧模型,负责其特定的任务。

  • 数据流与通信:多模态交互的关键在于如何高效地在这些模型之间传递数据。

    • 输入:用户的语音、图像或文本数据首先被捕获,并传递给相应的输入模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术与健康

你的鼓励将是我最大的创作动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值