一、你的AI助手,还停留在“陪聊”阶段?
现在的大模型更新速度,已经让人应接不暇,动不动就 “震撼发布”、“重磅更新”、支持这个、支持那个··· 似乎已经给我们在工作和生活中提供了超强的辅助。
但还是有很多人,停留在把ChatGPT、DeepSeek当成“智能搜索PLUS”的阶段,用来搜搜资料、玩一玩梗、画个表情包等等。距离用上真正的“AI效率引擎”还差一口气。
加上最近,Meta的扎克伯格和微软的纳德拉在LlamaCon上都提到一个核心观点:未来的职场人,不再是单纯的执行者,而是 “指挥AI小队的人”。而“提示词工程师”这个曾红极一时的岗位,也逐渐强调“写提示词”要融入每个人的基本技能。
也就是说,大家要学会如何快速调用AI工具,来解决一个个实际问题。对自己的生活有用,才是实际意义所在。 归根到底,驾驭AI,尤其是像ChatGPT这样的强大语言模型,核心不在于你会不会写代码,而在于你“告诉得明不明白”、“指挥得到不到位”。
基于这些洞察,和很多的读者私信提问,为了解决诸如:
🗣️ “AI生成的文章总是胡说八道”
🗣️ “一个任务要来回沟通半天,感觉AI也不是很聪明”
🗣️ “它就是不按照要求来怎么办?是不是都要提示词模板?”
我们深挖了ChatGPT在办公场景中的潜力,结合实测,筛选出10个能显著提升办公效率、但又常常被忽视的 “神操作”。只需要转换一点思路,就能让你的AI助手战斗力飙升!强烈建议大家阅读完本篇,去实际尝试,并且举一反三,最大化提升AI辅助工作和生活的效率~
二、10大ChatGPT办公提效神操作(实测揭秘)
好了,现在我们一起解锁ChatGPT的隐藏力量,让它成为你事业上的“效率外挂”!(*注:以GPT4o为例,同理可应用于其它模型包括DeepSeek)
1. 精准角色扮演 (Persona Prompting):让ChatGPT戴上“专家帽”
-
概述:你可以把它理解成给ChatGPT搞个 “人设”,让它从一个“万事通”变成你需要的 “特定领域专家”。就像拍电影,你得告诉演员他演的是谁。
-
创新点:相比于模糊提问,比如“帮我写个营销文案”,精准角色指令才能让ChatGPT输出更聚焦、更专业、语气和风格更贴合需求的结果。它就不再是泛泛而谈,而是“内行人说内行话”。
-
适合人群/场景:
-
市场营销人员:撰写特定目标群体的文案、社交媒体帖子。
-
产品经理:模拟用户反馈、撰写产品需求文档。
-
HR:起草招聘JD、内部通知。
-
客服:生成标准化的专业答复。
-
任何需要特定口吻或专业视角的内容创作场景。
-
实测体验: 我们测试发现,同样是“写一篇关于AI办公的文章”,不设定角色时,内容非常宽泛,类似一篇正确的废话··· 但当我们指令:“
你现在是一位资深的AI科技专栏作家,拥有10年内容创作经验,你的读者主要是对AI感兴趣但技术背景不深的职场人士。请为他们写一篇关于ChatGPT办公提效技巧的文章,风格要求专业且通俗易懂,多用类比和实际案例。
”
👇无角色指令的输出结果:
👇有角色指令的输出结果(输出内容的结构、深度和易读性均显著提升):
-
Prompt示例:
-
你现在是一位经验丰富的谈判专家,请帮我分析这份合同[附上合同文本关键条款]中可能存在的风险点,并给出应对建议。
-
扮演一位客户成功经理,草拟一封给长期合作但最近活跃度下降的客户的关怀邮件,目标是重新激活客户。
-
使用建议 & 踩坑提醒:
-
建议:角色描述越具体越好,可以包含职业、经验、目标受众、风格偏好等。
-
踩坑:避免过于复杂或矛盾的角色设定。如果角色太偏门,ChatGPT可能难以准确理解。
2. “喂食”优质范例 (Few-Shot Prompting):让AI“照猫画虎”再创作
-
概述:就像教小朋友写字,你先写几个漂亮的范字给他看,他就能模仿着写。给ChatGPT几个你想要的输出范例,它就能更好地理解你的“品味”。
-
创新点:如果觉得AI“get不到你想要的感觉”,通过提供1-3个优质范例,引导AI生成特定格式、风格或结构的内容,就可以极大提高输出结果的可用性。
-
适合人群/场景:
-
需要特定周报/日报格式的职场人。
-
需要统一品牌调性的内容运营。
-
仿写特定风格邮件或报告。
-
需要AI生成符合特定数据结构(如JSON、Markdown、HTML)的内容。
-
实测体验: 我们想让ChatGPT帮我们把一段产品介绍,改写成三条不同侧重点的微博文案,每条不超过140字,且包含emoji。直接说,效果一般。但当我们提供了1-2个我们认为好的微博文案范例后,再给出产品介绍,它生成的文案质量和模仿度就都非常高了
👇直接指令的输出结果:
👇提供范例后的结果:
-
Prompt示例:
这是几条我们之前效果很好的产品推广邮件标题范例:``范例1:[标题A]``范例2:[标题B]``现在,请根据以下产品特点[新产品特点描述],为我写5个类似的推广邮件标题。
-
使用建议 & 踩坑提醒:
-
建议:范例要少而精,不要给出大几十个,范例的质量直接决定了输出质量。另外要清晰地分开范例和你的新需求。
-
踩坑:范例之间的风格或格式差异过大,可能会让AI困惑,最好是确保我们的需求和范例在逻辑上是相关的。
3. 结构化指令拆解 (Chain-of-Thought + Step-by-Step):复杂任务的“分步导航”
-
概述:处理复杂任务时,你不能一口气告诉AI “给我一份完整的市场分析报告”,最好给出指示,引导它一步步完成:先分析目标用户,再分析竞品,然后提炼自身优势,最后总结策略。
-
创新点:将一个复杂任务分解为多个子任务,引导AI逐步思考和输出,能显著提高最终结果的逻辑性和完整性。
-
适合人群/场景:
-
撰写长篇报告、方案、商业计划书。
-
进行多维度数据分析和解读。
-
制定复杂活动策划方案。
-
任何需要深度思考和多步骤推理的任务。
-
实测体验: 我们尝试让ChatGPT直接“写一份关于提升团队远程协作效率的方案”,输出比较零散。改为分步指令后效果要好很多:
-
第一步:分析当前远程协作面临的主要痛点(至少列出5点)。
-
第二步:针对每个痛点,提出至少2个具体的解决方案或工具建议。
-
第三步:如何衡量这些方案的有效性?请设计3个关键指标。
-
第四步:总结以上内容,形成一份结构清晰的提升方案。
-
Prompt示例:
我想让你帮我策划一次线上产品发布会。请按以下步骤进行:``1. 明确发布会的核心目标和目标观众。``2. 构思发布会的主题和Slogan。``3. 设计发布会的主要流程环节(包括时间分配)。``4. 提出3个吸引观众参与的互动创意。``5. 列出推广此次发布会的渠道建议。 我们的产品是xxx。
-
使用建议 & 踩坑提醒:
-
建议:步骤要尽可能清晰、有逻辑顺序,每一步的指令要明确。可以要求AI在每一步完成后“等待你的下一步指令”,这样可以分步骤优化。
-
踩坑:步骤过多或过于琐碎,可能导致AI在中间“跑偏”或忘记前面的上下文。
4. 定制输出格式 (Format Control):让AI按你的“规矩”办事
-
概述:你希望AI给你一份Markdown表格、一个JSON对象,还是一段Python代码?要明确告诉它,就像点菜时指定“不要香菜”、“微辣”。
-
创新点:直接获得符合下游应用(如导入Excel、网站后台、代码编辑器)需求的结构化数据,减少手动转换和调整的麻烦。
-
适合人群/场景:
-
程序员:生成特定语言的代码片段、API文档。
-
数据分析师:输出CSV、JSON格式数据。
-
内容创作者:生成Markdown、HTML格式文本。
-
项目经理:输出任务清单、甘特图数据。
-
实测体验: 当我们需要快速整理一些竞品信息时,直接让ChatGPT “列出A、B、C三个产品的核心功能、价格和用户评价”,它给的是自然语言段落。但加上一句 “请用Markdown表格形式展示”,结果就非常清爽,可以直接复制粘贴到文档中。
👇普通输出结果:
👇要求Markdown表格输出结果:
-
Prompt示例:
-
请将以下会议记录[附上记录文本]的关键议题和行动点,整理成一个JSON对象,包含'议题 (topic)'、'负责人 (owner)'和'截止日期 (deadline)'字段。
-
根据以下描述[需求描述],用Python写一个函数,实现[功能]。请确保代码包含注释。
-
使用建议 & 踩坑提醒:
-
建议:明确指定你需要的格式名称(如Markdown, JSON, CSV, HTML, Python, Java等),对于复杂格式,可以给出一个简单的结构示例。
-
踩坑:对于非常复杂的自定义格式,AI可能难以一次完美生成。可以先让它生成基础结构,再逐步调整。
5. “反向提问”挖掘需求 (Clarification Prompting):让AI帮你理清思路
-
概述:有时候我们只知道大概方向,细节还比较模糊,没办法一次性把需求解释清楚。这时可以让AI扮演“咨询顾问”,通过反向对我们提问来帮我们明确真正想解决的问题和期望的成果。
-
创新点:变被动接受AI输出为主动与AI共同探索,也是利用AI的逻辑能力来反向梳理隐性需求,尤其适合项目初期或我们思路还不明朗的时候。
-
适合人群/场景:
-
创业者:梳理商业模式、产品定位。
-
项目负责人:明确项目目标和范围。
-
任何感到目标模糊,需要“外脑”协助理清思路的人。
-
实测体验: 读者反馈:“我想做一个提升个人品牌的社群,但不知道从何下手。” 我们引导他这样问ChatGPT:
我现在想建立一个专注于[你的领域,如AI写作]的个人品牌社群,但我有些迷茫。请你向我提出至少5个关键问题,帮助我理清社群定位、目标用户、核心价值和运营策略。
ChatGPT提出的问题往往能直击要害,帮助用户思考得更深入。
-
Prompt示例:
-
我希望优化我们公司的客户服务流程,但不太确定从哪里开始。请你作为一位经验丰富的流程优化顾问,向我提问,以帮助我定义清楚问题和期望的改进方向。
-
使用建议 & 踩坑提醒:
-
建议:明确告诉AI你需要它扮演一个提问者的角色,并且说明白你希望通过提问来达成的目标。
-
踩坑:如果初始描述过于空泛的话,AI可能比较难提出有深度的问题。
6. 创意发散与收敛 (Brainstorming Frameworks):戴着“镣铐”跳舞的灵感引擎
-
概述:纯粹的“头脑风暴”容易天马行空不落地。给AI一些经典思维框架(如SWOT分析、第一性原理、SCAMPER法),让它在框架内进行联想和生发,就能产出更结构化、可落地的创意了。
-
创新点 / 新特性:结合成熟方法论的系统性,让AI的头脑风暴不再是漫无目的的瞎想,而是有章法的创造。
-
适合人群/场景:
-
市场策划:构思营销活动创意。
-
产品设计:寻找产品创新点。
-
内容创作者:发掘新的选题角度。
-
团队领导:组织高效的团队脑暴会议。
-
实测体验: 当要求ChatGPT“为一款新的笔记软件想一些推广点子”,它可能会给出一些常规想法。但如果使用SCAMPER法:
请使用SCAMPER创新法,为一款AI驱动的笔记软件[产品特性描述]构思新的功能点或营销角度。请针对S (Substitute)、C (Combine)、A (Adapt)、M (Modify)、P (Put to other uses)、E (Eliminate)、R (Reverse) 分别提出想法。
👇输出的创意会更有条理和启发性:
-
Prompt示例:
-
请对我们公司[公司简介和业务]进行一次SWOT分析(优势、劣势、机会、威胁)。
-
模拟一次六顶思考帽会议,讨论是否应该推出[某个新产品/服务]。请分别从白色(事实)、红色(情感)、黑色(风险)、黄色(价值)、绿色(创意)、蓝色(控制)六个角度进行思考和陈述。
-
使用建议 & 踩坑提醒:
-
建议:先简单了解一下所用创意框架的基本原理,能更好地引导AI。
-
踩坑:某些复杂框架AI可能理解不到位,还需要你对输出的内容进行适当的筛选和深化。
7. 批量生成与迭代 (Batch Generation & Iteration):效率翻倍的内容工厂
-
概述:对于我们需要生成的内容,不要一次只让AI写一个,直接让它 “批量生产”,然后再从中挑选和优化。就像印刷厂,一次印一张和一次印一千张,开机成本差不多。
-
创新点:利用AI的快速生成能力,一次性获取多个版本的备选方案,可以极大节省反复沟通和修改的时间,尤其适合需要“量”和“多样性”的场景。
-
适合人群/场景:
-
广告文案:需要A/B测试的多个版本广告语。
-
社交媒体运营:多平台、多风格的帖子内容。
-
邮件营销:不同主题、不同开头的邮件草稿。
-
任何需要快速产出多个相似但略有差异内容的工作。
-
实测体验: 我们测试生成产品Slogan,指令:“
请为我们的AI效率工具‘智办公’(核心功能:智能任务管理、文档协作、会议纪要)创作10条Slogan,要求简洁有力,突出高效和智能。
”👇一次性得到10个选项,筛选和组合的效率远高于让它写一个、改一个
-
Prompt示例:
-
针对以下产品[产品介绍],请生成5个不同的价值主张,每个不超过20字。
-
为一篇关于[主题]的博客文章拟定3个吸引人的标题。
-
使用建议 & 踩坑提醒:
-
建议:明确告知需要的数量。对生成的内容,可以进一步要求AI“请对以上10条Slogan进行优化,让它们更押韵”或“请选出你认为最好的3条,并说明理由”。
-
踩坑:数量过多(如一次要100条)可能会导致质量下降或速度缓慢。建议适量,如5-10条。
8. “摘要与洞察”提取 (Summarization & Insight Extraction):海量信息一分钟速读
-
概述:面对长篇报告、厚厚文献或冗长会议记录,让ChatGPT帮你“划重点”、“找亮点”,就像有个超级阅读助手,能帮助你快速消化信息并提炼核心价值。
-
创新点:从简单的“文本摘要”进化到“洞察提取”。不仅是缩短文字,更能根据你的要求找出关键数据、观点、趋势等等。
-
适合人群/场景:
-
研究人员:快速阅读文献、行业报告。
-
管理者:高效掌握会议纪要、下属周报核心内容。
-
学生:快速梳理课程资料、论文重点。
-
任何需要从大量文本中快速获取关键信息的人。
-
实测体验: 将一篇3000字的行业分析文章喂给ChatGPT,指令:“
请将以下文章[粘贴文章]总结为500字以内的摘要,并提取出3个最主要的市场趋势和2个对我们公司[公司业务简述]的潜在机遇。
”👇ChatGPT不仅能准确概括,还能根据你的特定视角提炼相关洞察:
-
Prompt示例:
-
这是我们上周的销售数据报告[附上数据或关键描述],请帮我分析其中最显著的增长点和下滑点,并推测可能的原因。
-
请阅读这份用户访谈记录[附上记录],总结用户对产品A的主要痛点(至少3个)和期望的功能(至少2个)。
-
使用建议 & 踩坑提醒:
-
建议:输入文本长度有限制(尤其是免费版),长文本可能需要分段处理。明确你想要的摘要长度、关键点数量和提取信息的类型(如数据、观点、问题、解决方案等)。
-
踩坑:对于高度专业或包含大量未公开缩写/术语的文本,AI的理解可能会有偏差,需要人工校对。
9. 语言风格转换与润色 (Tone & Style Transfer):一键变身“语言魔术师”
-
概述:同一段内容,可以让ChatGPT帮你从“正式报告风”改成“活泼网文风”,或者把口语化的表达润色成专业的书面语。就像给文字“换衣服、化个妆”。
-
创新点:快速适应不同沟通场景和目标受众的语言要求,提升沟通效果,节省反复修改措辞的时间。
-
适合人群/场景:
-
内容创作者:将同一核心内容适配不同平台(如公众号、知乎、小红书)。
-
国际业务人员:将中文草稿润色成地道的商务英语邮件。
-
技术人员:将技术文档内容改写成通俗易懂的科普介绍。
-
所有需要调整文本风格以适应不同沟通对象的人。
-
实测体验: 我们把一段产品功能的枯燥描述(“本产品采用先进的XX算法,实现了XX功能,提升了XX效率…”)交给ChatGPT,指令:
请将以下这段产品描述,改写成一篇面向Z世代用户的社交媒体帖子,风格要求轻松、有趣,多用网络流行语和emoji,突出好玩和实用。原文:[粘贴原文]
👇输出的内容瞬间“年轻化”了,网感有了:
-
Prompt示例:
-
这是一封我写给客户的邮件草稿[附上草稿],请帮我润色一下,让语气更专业、更礼貌。
-
请将这篇学术论文的摘要[附上摘要],改写成一段150字以内、适合在行业会议上口头介绍的发言稿,要求更生动、更吸引人。
-
使用建议 & 踩坑提醒:
-
建议:清晰描述你想要的风格(如:正式、非正式、幽默、严肃、学术、口语化、专业、通俗等)和目标受众。可以结合“角色扮演”指令使用。
-
踩坑:过于极端的风格转换(如把严肃的法律文件改成搞笑段子)可能效果就不太好了。部分内容仍需人工审核,确保准确性。
10. 定制化学习与解释 (Personalized Learning & Explanation):随身携带的“超级导师”
-
概述:遇到复杂概念或想快速学习新技能的时候,让ChatGPT做你的私人教师/教练,用你最容易理解的方式解释,还能根据你的水平调整难度。就像拥有一个7x24小时在线、耐心无限的专属家教。
-
创新点:超越传统搜索引擎的“知识呈现”,实现个性化的“知识内化”。可以要求AI用类比、实例、简化版等多种方式来解释同一个概念,直到你弄懂为止。
-
适合人群/场景:
-
职场新人:快速学习行业知识、公司业务。
-
跨界学习者:理解陌生领域的概念和术语。
-
需要向非专业人士解释复杂问题。
-
所有希望高效学习和理解新知识的人(以及辅导孩子作业火冒三丈的家长)
-
实测体验: “我想了解什么是‘区块链’,但网上资料太复杂了。” 建议这样问:
请用一个5岁小孩也能听懂的简单比喻,解释一下什么是“区块链”及其核心原理。然后再用稍微专业一点但仍然通俗的语言,为一位零基础的成年人解释一遍。
ChatGPT会分别给出不同深浅的解释,帮助用户循序渐进理解。
👇成年人解释版:
👇小朋友解释版:
-
Prompt示例 / 操作指令示例:
-
我是一名市场营销专业的学生,请用我能理解的方式解释一下“增长黑客”这个概念,并举例说明其在实际工作中的应用。
-
请解释金融衍生品中的“期权”是什么。先给一个非常基础的定义,然后通过一个生活中的例子来说明看涨期权和看跌期权的区别。
-
使用建议 & 踩坑提醒:
-
建议:明确你的现有知识背景和期望的理解深度。可以要求AI“像对XX(某个职业/年龄段)解释一样解释给我听”。大胆追问“你能换个例子吗?”“这一点我还是不太明白,能再详细点吗?”
-
踩坑:AI的知识截止日期要注意,对于非常前沿或快速变化的领域,信息可能不是最新的。对于重要知识点,还是要谨慎交叉验证。
三、使用推荐组合
不同类型用户推荐搭配:
-
普通职场白领:推荐组合
1 (角色扮演)
+8 (摘要洞察)
+9 (风格润色)
+10 (学习解释)
,快速处理日常邮件、报告、学习新知识。 -
内容创作者/市场运营:推荐组合
1 (角色扮演)
+2 (范例喂食)
+6 (创意框架)
+7 (批量生成)
+9 (风格转换)
,打造高效内容生产线。 -
项目经理/团队Leader:推荐组合
3 (指令拆解)
+4 (格式定制)
+5 (反向提问)
+8 (摘要洞察)
,提升项目规划和管理效率。 -
自由职业者/AI兴趣者:以上皆可按需组合,重点是先熟练掌握
1 (角色扮演)
和3 (指令拆解)
,这是发挥ChatGPT能力的基础。
四、实用的提示词模板
还是那句老话,看再多理论,不如上手实操一次!
为了让你能立刻体验到这些神操作的威力,我们做了一份 《ChatGPT办公提效Prompt模版包》, 里面包含了这10大操作的:
-
即用型Prompt指令模版 (覆盖会议纪要、邮件撰写、市场分析、内容创作等20+常见高频场景)
-
常见踩坑点与优化技巧
-
Bonus:我们实测有效的“组合拳”工作流示例
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取