前言
什么是LLM概念呢?
自从2022年12月 ChatGPT 横空面世以来,AI 领域获得了十足的关注和资本,其实AI的概念在早些年也火过一波,本轮 AI 热潮相比于之前的 AI,最大的区别在于:生成式。本文主要介绍大语言模型(Large Language Model,简称LLM)。
LLM详解
1.大预言模型LLM是什么?
经过大量文本数据训练,能够理解和处理人类语言,并执行多种语言任务的大型模型被称为大语言模型(LLM)。例如,GPT、LLaMA、Mistral 和 BERT 都属于这一类模型。LLM本质上是对训练文本信息的高效压缩,同时具备一定的泛化能力。与数据库或搜索引擎不同,LLM可以创造性地生成此前从未出现过的文本内容。
2. 大语言模型(LLM)发展的最新程度和成果
1. 模型规模和性能提升
-
参数规模不断增长,数十亿到数千亿级,增强了模型的理解和生成能力。
-
自适应微调技术(LoRA、RLHF)模型在特定任务上的性能进一步优化。
-
增强了多模态能力,可处理文本、图像甚至视频输入。
2. 高效训练与部署
-
高效算法(如稀疏注意力、混合精度训练)大幅减少计算成本。
-
模型压缩技术(如量化和剪枝)让LLM能够在资源受限的环境中运行。
-
开源模型(如LLaMA、Mistral)降低了研究与应用的门槛。
3. 应用场景扩展
- 内容生成:支持文章写作、代码生成、翻译等多种场景。
- 知识问答:在医疗、法律等专业领域提供精准解答。
- 协同创作:与用户互动进行创意策划、产品设计等。
- 教育与辅助:开发虚拟助教、语言学习工具等应用。
4. 多语言支持
- 增强对多语言的理解与生成能力,覆盖更多小语种,推动全球化应用。
5. 安全与伦理改进
-
加强对有害内容的过滤能力,减少偏见和歧视性输出。
-
增强对敏感领域的控制能力,避免产生虚假信息。
6. 多模态与跨领域融合
-
实现多模态模型的早期成功,支持文本与图像的结合(生成图片说明)。
-
跨学科融合推动在科学研究、艺术创作等领域的创新应用。
3. 大语言模型(LLM)现阶段能做什么
大语言模型的能力涵盖多个领域,主要可以概括为:内容创作、数据处理与分析、任务自动化、智能助手与客服等,以下对各项能力进行概述:
1. 内容创作
- 写作:可以撰写各种类型的文本,如邮件、计划书、宣传文案、短故事等;还能模仿特定风格(如社交媒体文风或某位作家风格),尤其擅长生成条理清晰的长篇内容。但在写作高质量、完整且有趣的小说方面还有改进空间。
- 润色:对提供的大纲或已有文本进行扩展、改写,适用于文案润色、内容优化,甚至帮助规避重复检测的场景。
- 总结:自动生成会议记录、文章或长文档的核心要点和待办事项,极大提高效率。
- 翻译:支持多语言互译,能够实现白话文与文言文之间的转换,通过特定提示词还能生成惊艳的多轮翻译效果。
2. 数据处理与分析
- 数据提取与分析:可以从复杂报告或文档中提取关键信息,进行数据分析,并生成可视化图表,帮助用户快速理解数据。
- 编程辅助:通过工具如GitHub Copilot,帮助程序员完成代码生成、调试、文档生成等任务,大幅提升开发效率。
3. 任务自动化
- 结构化信息提取:从用户的自然语言输入中提取结构化信息,便于传递给程序进行进一步的自动化处理。
- 工作流智能化:利用智能代理(Agent)实现复杂任务的自动化管理,如安排日程、处理文档等。
4. 智能助手与客服
- 智能助手:结合工作流和Agent技术,能够完成任务协作、决策辅助、知识问答等多功能任务。
- 智能客服:基于检索增强生成(RAG)技术,提供精准、高效的客服服务,可快速响应用户问题并提供个性化解决方案。
LLM基础面试题
-
当前有哪些主流的开源模型架构?
-
什么是prefix LM与causal LM,它们有何不同?
-
大型语言模型(LLM)的训练目标是什么?
-
涌现能力的根本原因是什么?
-
为什么大多数现代大型模型采用Decoder-only结构?
-
大型语言模型架构概述及LLM复读机问题分析
-
LLM输入的文本长度理论上能够无限扩展吗?
-
选择BERT、LLaMA、ChatGLM等大模型的依据是什么?
-
是否需要为不同领域开发专门的大型模型?
-
如何优化大型模型以处理更长的文本?
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取