❝
还在为智能体(Agent)表现不稳定而抓狂?或许不是模型的问题,而是你“说得不够清楚”。随着 AI 应用从单轮 Prompt 演化为具备记忆、检索、调用能力的多步骤系统,Context Engineering(上下文工程)正逐步成为 LLM 应用中的关键能力——它决定了你的 AI 是否真的“理解”你要做什么。
✅ 什么是 Context Engineering?
❝
Context Engineering is building dynamic systems to provide the right information and tools in the right format such that the LLM can plausibly accomplish the task.
上下文工程的核心目标是:通过动态构建系统,让模型获取完成任务所需的一切信息、工具与格式结构。
这一概念由中 Tobi Lutke 文、 中 Ankur Goyal 文 和中 Walden Yan 文 等多位专家提出,并在中 Cognition 文 的长周期智能体构建理论中被反复强调。
🧩 它包括以下五大核心维度:
要素 | 含义说明 |
---|---|
动态系统 | 上下文来自多个来源:用户输入、历史交互、工具响应、外部知识等 |
正确信息 | 模型不是读心术高手,缺什么它就做不出来什么 |
合适工具 | 工具是模型认知能力的延展,必须显式集成,如检索、计算、外部 API 等 |
格式正确 | 信息是否易被模型“看懂”影响巨大——冗长 JSON 不如简洁结构 |
可行性判断 | 始终自问:当前上下文配置是否足以让模型完成任务? |
🤔 为什么 Context > Prompt?
在早期,Prompt Engineering 是提升效果的关键,但如今单轮提示已不足以驾驭复杂任务。Context Engineering 不只是“怎么问”,而是“让模型真正知道你在做什么”。
Prompt 工程只关注输入句子怎么写,而 Context 工程则关注:
- 上下文是否完整?
- 工具是否对接?
- 信息是否结构清晰?
- 指令是否明确?
❝
当智能体出错时,90% 的原因是“上下文构建失败”,而非模型本身性能问题。
💡 实践示例:Context Engineering 怎么做?
以下是常见的上下文工程实践场景:
类型 | 场景示例 |
---|---|
工具调用 | 接入天气 API,确保返回结果结构简洁明晰 |
短期记忆 | 将当前对话自动摘要并注入后续提示中 |
长期记忆 | 基于用户过往行为和偏好,构建个性化上下文 |
动态检索 | 实时查询外部知识库并填充至提示模板中 |
指令工程 | 明确设定智能体角色与限制条件(如“你是一名冷静的医学专家”) |
这些能力的背后,正是“动态、结构化、可控”的上下文构建逻辑。
🛠️ 工具实战:LangGraph + LangSmith 如何赋能 Context Engineering?
*LangGraph:打造可控上下文的执行引擎*
LangGraph 是构建可控 Agent 的理想框架,支持细粒度控制流程、工具接入、上下文组织等关键能力。
# 示例伪代码
with LangGraph() as agent:
agent.add_step(retrieve_memory) # 控制记忆调用
agent.set_input_format(clean_json) # 控制输入格式
agent.link_tools([calculator, web_search]) # 控制工具集
相比其他高度封装的 Agent 框架,LangGraph 更注重透明与可调性,让开发者“掌控每一块上下文砖石”。
推荐阅读中 Dex Horthy 文的 《12 Factor Agents》,其中提出“Own your prompts”、“Own your context building”等核心理念,与本文完全契合。
*LangSmith:可视化上下文构建流程,定位问题利器*
LangSmith 是 LangChain 团队推出的 LLM 可观测性平台,能帮助你逐步调试与完善上下文系统。
功能亮点包括:
- 可视化追踪 Agent 执行流程
- 查看每步输入输出是否完整、格式是否合理
- 分析工具调用是否成功
- 快速定位上下文缺失环节
[Trace Log 示例]
✅ Step1: 检索用户历史偏好 → 成功(120ms)
❌ Step2: 格式化天气API响应 → 错误:JSON 嵌套过深
❌ Step3: 调用 LLM → 失败:缺失 location 参数
无论是 prompt 不生效,还是工具调用异常,都可借助 LangSmith 快速排查上下文构建链路中的薄弱点。
🧭 总结:Communication is ALL You Need
几个月前,LangChain 博客曾发文 《Communication is All You Need》,提出一个简单却被严重低估的事实:
❝
不是模型不够聪明,而是我们没“说清楚”。
中 Context Engineering 文 正是“说清楚”这件事的系统化方法,它让 Agent 不再只是回应提示的对话工具,而是拥有理解力、记忆力、行动力的智能体。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。