继提示词工程、RAG技术浪潮后,LangChain领域中上下文工程正成为新的热门方向!

身处AI浪潮之中,提示词工程、RAG、记忆这些术语或许已不陌生,但上下文工程(context engineering)这一领域却尚未引起广泛关注。 上下文工程(context engineering)这一领域却尚未引起广泛关注。

事实上,上下文工程并非新兴概念,近两年来众多智能体开发者始终对其保持密切关注。至于它与提示词工程、RAG等技术的关联及重要性,可通过以下图表一目了然地呈现。

img

在传统提示工程里,开发者往往聚焦于精心雕琢提示语,盼着借此获取更优答案。但随应用复杂度持续攀升,单纯依靠提示难以适配现代智能体需求的问题,渐渐凸显出来。到如今 为智能体提供完整、结构化的上下文信息,其重要性已远超那些精巧设计的提示词 。

一言以蔽之,上下文工程就是为满足上述需求才出现的。

简单来说,上下文工程就是构建动态系统,把合适的信息和工具,按正确格式提供给LLM,使LLM可以合理完成任务 。

多数情形下,智能体执行任务不尽人意,核心缘由是没把恰当的上下文、指令和工具传递给模型。LLM 应用正从单纯的提示,过渡到更复杂、动态的智能系统形态 。

基于以上原因,上下文工程已成为AI工程师提升专业能力的重点发展方向。

​ 上下文工程的具体定义是什么?

上下文工程致力于构建灵活可变的系统,通过精准匹配信息格式,为大语言模型(LLM)供给有效的信息与工具资源,从而助力其顺利达成任务目标。

上下文工程可视为一套完整的系统解决方案。随着智能体应用场景日趋复杂,其上下文信息来源愈发多元,既包含开发者构建的基础框架、用户动态输入,也涵盖历史交互痕迹、工具运行结果及第三方数据等。若想实现这些信息的有序整合与高效利用,必然需要一套复杂且专业的系统支撑。

上下文工程具有动态特性。由于大量上下文信息处于持续变化、实时生成的状态,因此在构建最终提示时,不能依赖固定的静态模板,而需要采用动态化的逻辑来应对。

准确信息的提供至关重要。智能体系统运行效果差,最常见的症结就在于缺失正确的上下文。大语言模型(LLM)无法洞悉人类思维,所以必须向其明确传递精准信息。毕竟在信息处理中,输入质量直接决定输出结果,低质量的输入只能换来毫无价值的反馈。

合理的工具支持是必要条件。由于LLM无法单纯依靠输入数据解决全部问题,在这些超出其原生能力范围的任务场景下,若想充分发挥LLM的效能,就需要为其配备适用的工具。无论是用于信息获取、任务执行,还是其他中间环节的辅助,这些工具都至关重要。可以说,在优化LLM任务处理能力方面,工具配备与信息供给同样关键。

规范的格式是交互基础。和人际沟通需注意表达逻辑类似,与LLM进行交互时,信息传递格式至关重要。特别是在LLM调用工具的过程中,规范设置工具的输入参数,是保障工具正常运作的必要条件。

​ 上下文工程重要性工程在哪里?

在智能体系统运行失效的场景中,LLM通常是问题的关键所在。基于第一性原理进行深度拆解,LLM的错误可归因于两个核心因素:

一方面底层模型自身有漏洞,另一方面是模型能力不足以支撑任务。

底层模型在上下文传递环节出现缺失或偏差,使得最终输出无法达到预期的正确性。

伴随技术的不断精进,更多时候(特别是当模型变得更为强大时),模型错误多由第二个原因引发。致使模型性能降低的上下文传递问题,一般由以下因素导致:

上下文的缺失意味着模型未能接收到做出正确判断所需的完整信息。毕竟模型无法洞悉人类思维,若缺乏正确的上下文输入,它根本无法感知相关信息。

若上下文格式不正确,就会影响模型表现。这和人类沟通同理,表达形式会决定交流效果——数据传递给模型时,其格式精准度直接关系到模型的输出结果。

下文工程和提示工程不同点具体是什么?

为什么要推动从提示工程到上下文工程的变革?在智能模型发展的早期阶段,开发者往往将重心放在设计巧妙的提示词上,试图借此优化模型输出。但随着应用场景的复杂化,如今愈发明确:唯有提供完整、结构化的上下文信息,才能满足复杂任务需求,这远比精巧的提示措辞更具价值。

提示工程本质上是上下文工程的一个分支。即使手头有完整的上下文信息,如何将其组合成有效的提示仍是关键。二者的本质区别在于,提示工程聚焦于单个输入数据的优化,而上下文工程则需要管理动态数据集,并进行正确的格式处理 。

上下文的重要内容之一,便是指导LLM具体表现的核心指令。实际上,这一要素在提示工程中也发挥着关键作用。

​ 优质的上下文工程应当涵盖:

关于工具的应用:智能体在检索外部信息时,需要依赖特定工具实现数据获取;而工具反馈的信息,必须经过格式调整,确保LLM能够准确理解并处理。

短期记忆管理:在长时间对话过程中创 建对话内容的精简摘要,便在后续交互中调用 。

关于长期记忆:一旦用户在之前的交流中表明过喜好倾向,就应当提取并利用这些数据。

提示工程设计:在生成提示信息时,要将智能体的操作要求进行清晰、完整的表述。

信息检索:通过动态方式获取相关数据,并在激活LLM前将信息补充到提示语句内。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值