一、LangChain简介
1.1 什么是LangChain?
LangChain是一个专为构建语言模型驱动的应用程序而设计的开源框架。由Harrison Chase等人于2023年创建,它可以帮助开发者更好地利用大型语言模型(LLMs)的潜力,将语言模型与其他工具(如数据存储、API等)结合起来,从而创建出更强大的以语言为核心的智能应用。
同时,LangChain是开源的,这意味着开发者可以根据自己的需求自由地查看、修改和扩展代码。这种开源的模式促进了社区的繁荣发展。
简单来说,LangChain能够将大模型与工具高效结合,完成我们指定的任务。
- LangChain官网:
https://python.langchain.com/docs/introduction/
- LangChain中文网:
https://www.langchain.com.cn/docs/introduction/
1.2 LangChain的核心组件
LangChain的核心功能通过6大模块实现:
模块 | 功能描述 |
---|---|
Models | 统一接口调用各类语言模型(LLMs)、聊天模型(ChatModels)和嵌入模型(Embeddings) |
Prompts | 动态管理提示模板,支持变量注入和优化(如翻译、问答模板) |
Indexes | 构建文档索引(如向量数据库),实现高效信息检索(RAG架构核心) |
Chains | 串联多个组件(如检索→生成→执行),实现多步骤工作流(如文档问答系统) |
Agents | 赋予LLM决策能力,动态调用外部工具(如搜索API、Python解释器) |
Memory | 维护对话历史上下文,支持多轮交互(如聊天机器人) |
1.3 为什么需要LangChain
LangChain解决了LLM原生应用的三大核心问题:
1、突破LLM的能力限制
-
数据感知:连接数据库、文档、API等外部数据源,让LLM基于实时信息生成回答(如企业知识库问答)
-
工具集成:通过Agents调用计算器、搜索引擎等工具,扩展LLM功能边界
2、提升开发效率
- 模块化设计:避免重复造轮子,直接使用预置组件(如提示模板、向量检索器)
- 链式工作流:通过Chains封装多步骤任务(如“提问→检索→生成→执行”),简化复杂逻辑开发
3、增强安全性与可控性
- 隐私保护:私有数据无需上传至公有模型,通过本地向量库处理敏感信息
- 减少幻觉:RAG架构强制模型基于检索结果生成答案,降低编造风险
二、LangChain环境配置
2.1 创建虚拟环境
创建python3.11.6的虚拟环境
conda create -n lc_test python==3.11.6
2.2 安装常用包
- 激活虚拟环境
activate lc_test
- 安装langchain相关常用包
pip install langchain==0.3.25pip install langchain-community== 0.3.24pip install langgraph == 0.4.7pip install langchain-openai==0.3.18
- 安装其他包
对于其他包,可按需安装。
pip install pandaspip install numpy...
2.3 测试是否安装成功
import langchainprint(langchain.__version__)
三、LangChain初步调用llm测试
from langchain_openai import ChatOpenAI
# 初始化ChatOpenAI(指向本地Ollama)llm = ChatOpenAI( model="gemma3:12b", # 模型名称需与Ollama本地一致 openai_api_base="http://localhost:11434/v1", openai_api_key="asdf" # 任意非空值)
# 调用模型response = llm.invoke("解释深度学习的基本概念")print(response.content)
至此,我们已经成功安装langchain且调用本地大模型。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。