刚刚,吴恩达(@AndrewYNg)发布了一门新课程「Post-training of LLMs」。
该课程由华盛顿大学助理教授、NexusFlow联合创始人Banghua Zhu(@BanghuaZ)主讲。
这门课程瞄准了当下AI领域最实用的技术:
如何把一个只会预测下一个词的模型,变成真正能帮你干活的助手。
要知道,训练一个LLM需要两个关键阶段:预训练和后训练。
预训练阶段,模型从海量无标注文本中学习预测下一个词或token。而后训练阶段,它才学会真正有用的行为:遵循指令、使用工具和推理。
后训练把一个通用的token预测器(在数万亿无标注文本token上训练的模型)转变成一个能遵循指令并执行特定任务的助手。
更重要的是,后训练比预训练便宜得多,这让更多团队有机会把后训练方法纳入自己的工作流程。
三种后训练方法
课程重点介绍了三种常见的后训练方法:
监督微调(SFT)
你给模型提供输入和理想输出的配对数据进行训练。这是最直接的方法,就像教小孩认字一样,告诉它「看到这个问题,就这样回答」。
直接偏好优化(DPO)
你同时提供一个偏好(chosen)和一个不太偏好(rejected)的响应,训练模型偏向更好的输出。这就像告诉模型「这个答案好,那个答案差」,让它学会分辨优劣。
在线强化学习(RL)
模型生成输出后,根据人类或自动反馈获得奖励分数,然后更新模型以提升性能。这更像是「做对了给糖,做错了改正」的训练方式。
动手实践才是王道
这门课程最大的亮点是大量的动手实验。
你将:
- 构建SFT管道,把基础模型变成指令模型
- 探索DPO如何通过最小化对比损失来重塑行为——惩罚糟糕的响应,强化偏好的响应
- 实现DPO管道来改变聊天助手的身份
- 学习在线RL方法,如近端策略优化(PPO)和群体相对策略优化(GRPO),以及如何设计奖励函数
- 使用GRPO训练模型,通过可验证的奖励提升其数学能力
所有实验都基于从Hugging Face下载的预训练模型,你能亲眼看到每种技术如何塑造模型行为。
社区反响热烈
课程一发布就引发了热烈讨论。
TaskDrift™(@TaskDrift)指出了关键:
更多人需要理解后训练的力量。SFT、DPO和RL不只是大实验室的专利,它们为小团队解锁了真正的用例。很高兴这门课程让它变得实用且动手。
Consciousness is logic(@logicThink11031)认为:
理论上,它可以填补LLM的空白,但本质上,这仍然是一种精化网格的努力(类似于微积分接近无穷的概念)。
他进一步指出:
我一直认为:从图灵工具→McCulloch-Pitts神经网络→LLM,从智能的角度来看,整体方向应该是错误的。如果我们不在理论上改变方向,只是盲目地填补空白,意义不大!
Sudhir Gajre(@SudhirGajre)则从实践角度给出建议:
Andrew,诚然还没看过课程材料。但我建议加入一些关于上下文工程边界和限制的讨论。在我看来,只有在你用尽了CE之后,才应该考虑后训练。
后训练是LLM训练中发展最快的领域之一
无论你是想构建高精度的特定上下文助手、微调模型的语气,还是提升特定任务的准确性,这门课程都能让你亲身体验当今塑造LLM后训练的最重要技术。
Victor Ajayi(@the_victorajayi)的评价很有代表性:
我一直渴望深入了解后训练,这门课程看起来是完美的机会。SFT、DPO和RL是塑造真实世界AI行为的强大工具,迫不及待想看看每种方法在实践中如何工作。感谢让这变得易于获取!
如果说预训练就像教一个人识字,让他认识所有的字词,理解语言的基本规律。
那么后训练,则是教他如何写作——什么时候该用什么词,如何组织语言来表达特定的意思。
前者让模型「知道」,后者让模型「会用」。
这也解释了为什么后训练如此重要:
没有它,我们得到的只是一个博学但不会应用的「书呆子」。
现在,吴恩达把这门技术的钥匙交到了你手中。
学还是不学,我只能帮到这里了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。