欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景与意义
在数字身份认证、支付安全、门禁系统等场景中,确保正在识别的是真实的人脸而非伪造手段(如照片、视频或3D模型)至关重要。传统的面部识别系统容易受到这类伪造手段的欺骗,因此开发一种高效、准确的人脸活体检测系统具有极高的实际应用价值。本项目利用Python、OpenCV和dlib库,通过眨眼和张口检测实现人脸活体检测,从而有效验证人脸的真实性[1][4]。
二、技术原理与实现
人脸检测:
使用OpenCV库进行人脸检测,主要依赖于Haar级联分类器或HOG+SVM算法在输入图像中定位人脸区域[1]。
面部特征点检测:
利用dlib库中的68点人脸特征点检测器,在检测到的人脸区域内提取面部特征点。这些特征点包括眉毛、眼睛、鼻子、嘴巴等关键部位的位置信息[1][2]。
活体检测算法:
眨眼检测:通过比较连续帧中眼睛特征点的位置变化来实现。当眼睛特征点(例如dlib中的6个眼睛数据点)的坐标在连续帧中发生显著变化时,判断为眨眼动作[2][5]。
张口检测:通过比较连续帧中嘴巴特征点的位置变化来实现。当嘴巴特征点(如dlib中的上下嘴唇数据点)的坐标在连续帧中发生显著变化时,判断为张口动作[3]。
综合判断:
根据眨眼和张口检测的结果,通过一定的算法进行综合判断,最终确定人脸的真实性。例如,可以设置一定的眨眼频率和张口幅度阈值,当检测到的眨眼和张口频率及幅度满足这些阈值时,判断为真实人脸[1]。
三、项目实现流程
环境搭建:安装Python、OpenCV和dlib库,配置开发环境[1]。
算法实现:编写Python代码,实现人脸检测、面部特征点检测以及眨眼和张口检测算法[1]。
界面设计:设计一个友好的用户界面,方便用户进行图像输入、结果查看和参数设置等操作[1]。
测试与验证:使用包含真实人脸和伪造人脸的数据集