推荐系统目的
概述
- 推荐系统是信息过载所采用的措施,面对海量的数据信息,从中快速推荐出符合用户特点的物品。解决一些人的“选择恐惧症”;面向没有明确需求的人。
- 解决如何从大量信息中找到自己感兴趣的信息。
- 解决如何让自己生产的信息脱颖而出,受到大众的喜爱。
目的
- 让用户更快更好的获取到自己需要的内容
- 让内容更快更好的推送到喜欢它的用户手中
- 让网站(平台)更有效的保留用户资源
推荐系统基本思想
- 知你所想,精准推送
利用用户和物品的特征信息,给用户推荐那些具有用户喜欢的特征的物品。 - 物以类聚
利用用户喜欢过的物品,给用户推荐与他喜欢过的物品相似的物品。 - 人以群分
利用和用户相似的其他用户,给用户推荐那些和他们兴趣爱好相似的其他用户喜欢的物品。
推荐系统的数据分析
- 要推荐物品或内容的元数据,例如关键字,分类标签,基因描述等;
- 系统用户的基本信息,例如性别,年龄,兴趣标签等
- 用户的行为数据,可以转化为对物品或者信息的偏好,根据应用本身的不同,可能包括用户对物品的评分,用户查看物品的记录,用户的购买记录等。这些用户的偏好信息可以分为两类: .
显式的用户反馈:这类是用户在网站上自然浏览或者使用网站以外,显式的提供反馈信息,例如用户对物品的评分,或者对物品的评论。
隐式的用户反馈:这类是用户在使用网站是产生的数据,隐式的反应了用户对物品的喜好,例如用户购买了某物品,用户查看了某物品的信息等等。
推荐系统分类
推荐算法简介
- 基于人口统计学的推荐算法
- 基于内容的推荐算法
- 基于协同过滤的推荐算法
- 混合推荐
实际网站的推荐系统往往都不是单纯只采用了某-种推荐的机制和策略,往往是将多个方法混合在-起,从而达到更好的推荐效果。比较流行的组合方法有:
- 加权混合
用线性公式 ( linear formula )将几种不同的推荐按照-定权重组合起来,具体权重的值需要在测试数据集上反复实验,从而达到最好的推荐效果 - 切换混合
切换的混合方式,就是允许在不同的情况(数据量,系统运行状况,用户和物品的数目等)下,选择最为合适的推荐机制计算推荐 - 分区混合
采用多种推荐机制 ,并将不同的推荐结果分不同的区显示给用户 - 分层混合
采用多种推荐机制 ,并将-一个推荐机制的结果作为另-一个的输入,从而综合各个推荐机制的优缺点,得到更加准确的推荐
推荐系统评测指标
- 预测准确度
- 用户满意度
- 覆盖率
- 多样性
- 惊喜度
- 信任度
- 实时性
- 健壮性
- 商业目标