推荐系统概述

本文概述了推荐系统如何通过知你所想、物以类聚和人以群分的思想,利用数据分析实现个性化推荐。讲解了各类推荐算法如统计学、内容和协同过滤,并介绍了混合推荐方法。重点讨论了预测准确度、用户满意度等评测指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐系统目的

概述

  • 推荐系统是信息过载所采用的措施,面对海量的数据信息,从中快速推荐出符合用户特点的物品。解决一些人的“选择恐惧症”;面向没有明确需求的人。
  • 解决如何从大量信息中找到自己感兴趣的信息。
  • 解决如何让自己生产的信息脱颖而出,受到大众的喜爱。

目的

  • 让用户更快更好的获取到自己需要的内容
  • 让内容更快更好的推送到喜欢它的用户手中
  • 让网站(平台)更有效的保留用户资源

推荐系统基本思想

  • 知你所想,精准推送
    利用用户和物品的特征信息,给用户推荐那些具有用户喜欢的特征的物品。
  • 物以类聚
    利用用户喜欢过的物品,给用户推荐与他喜欢过的物品相似的物品。
  • 人以群分
    利用和用户相似的其他用户,给用户推荐那些和他们兴趣爱好相似的其他用户喜欢的物品。

推荐系统的数据分析

  • 要推荐物品或内容的元数据,例如关键字,分类标签,基因描述等;
  • 系统用户的基本信息,例如性别,年龄,兴趣标签等
  • 用户的行为数据,可以转化为对物品或者信息的偏好,根据应用本身的不同,可能包括用户对物品的评分,用户查看物品的记录,用户的购买记录等。这些用户的偏好信息可以分为两类: .
    显式的用户反馈:这类是用户在网站上自然浏览或者使用网站以外,显式的提供反馈信息,例如用户对物品的评分,或者对物品的评论。
    隐式的用户反馈:这类是用户在使用网站是产生的数据,隐式的反应了用户对物品的喜好,例如用户购买了某物品,用户查看了某物品的信息等等。

推荐系统分类

在这里插入图片描述

推荐算法简介

  • 基于人口统计学的推荐算法
    在这里插入图片描述
  • 基于内容的推荐算法
    在这里插入图片描述
  • 基于协同过滤的推荐算法
    在这里插入图片描述
  • 混合推荐
    实际网站的推荐系统往往都不是单纯只采用了某-种推荐的机制和策略,往往是将多个方法混合在-起,从而达到更好的推荐效果。比较流行的组合方法有:
  1. 加权混合
    用线性公式 ( linear formula )将几种不同的推荐按照-定权重组合起来,具体权重的值需要在测试数据集上反复实验,从而达到最好的推荐效果
  2. 切换混合
    切换的混合方式,就是允许在不同的情况(数据量,系统运行状况,用户和物品的数目等)下,选择最为合适的推荐机制计算推荐
  3. 分区混合
    采用多种推荐机制 ,并将不同的推荐结果分不同的区显示给用户
  4. 分层混合
    采用多种推荐机制 ,并将-一个推荐机制的结果作为另-一个的输入,从而综合各个推荐机制的优缺点,得到更加准确的推荐

推荐系统评测指标

  • 预测准确度
  • 用户满意度
  • 覆盖率
  • 多样性
  • 惊喜度
  • 信任度
  • 实时性
  • 健壮性
  • 商业目标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值