最大连续子段和

该博客介绍了如何利用动态规划解决寻找给定数列中最大连续子段和的问题。输入包含数列长度和整数,输出为最大连续子段的总和。解题思路包括初始化dp数组,并根据dp[i-1]的值选择更新dp[i]的方式,以求得最大和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

给出一串长度为n的数列,要求从中找出连续的子段使得总和最大。

输入格式

输入包括两行,第一行表示数列长度N(N<=100000)第二行包括N个整数来描述这个数列,每个数的绝对值不超过1000。

输出格式

输出只有一个整数,为最大连续段总和

输入输出样列

输入样例1:

5

1 -2 3 1 -4

输出样例1:

4

【耗时限制】1000ms 【内存限制】128MB

用线性Dp可以解决此类问题。

【解题思路2】动态规划

定义一个dp数组,定义dp[i]是以a[i]为结尾的最大连续子段和 A 𝑁 3 -4 2 10 ① dp[1]是以a[1]结尾的最大连续子段和,dp[1]=3 ② 以a[2]结尾的子段可以是a[1]a[2]也可以单独是a[2],由于a[1]值是大于0的,所以a[1]a[2] 的值会比a[2]大,dp[2]=dp[1]+a[2]=-1 ③ 以a[3]为结尾的子段可以是a[3]接在a[2]的后面,也可以单独是a[3],由于dp[2]是小于0的 a[3]接在后面会使的dp[3]减小,所以a[3]单独存在会更大一些,dp[3]=a[3]=2 ④ 以a[4]为结尾的子段可以是a[4]接在a[3]的后面,也可以单独是a[4],由于dp[3]是大于0的 a[4]接在后面会使的dp[4]增大,dp[4]=dp[3]+a[4]=12定义一个dp数组,定义dp[i]是以a[i]为结尾的最大连续子段和 如果dp[i-1]>0,无论a[i]为何值,那么dp[i]=dp[i-1]+a[i]是最大 如果dp[i-1]<=0,无论a[i]为何值,dp[i]=a[i]; ①定义ⅆ𝑝 ⅈ 为以𝑨𝐢结尾的连续子段的和。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string.h>
#include <sstream>
#include <cstring>
#include <algorithm>
using namespace std;
long long a[200000+10],dp[200000+10];
int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;++i){
		cin>>a[i];
	}
	dp[1]=a[1];
	long long maxn=-10000;
	for(int i=2;i<=n;++i){
		dp[i]=max(dp[i-1]+a[i],a[i]);
		maxn=max(dp[i],maxn);
	}
	cout<<maxn;
	return 0;
}

最大连续问题是经典的算法问题之一,目标是从给定的一维组中找到一个连续组,使其元素之达到最大值。 ### 解法一:动态规划 (时间复杂度 O(n) ) 我们通过动态规划的思想解决该问题。核心思路是记录当前的最大以及全局最大: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int maxSubArraySum(const vector<int>& nums) { int n = nums.size(); if (n == 0) return 0; // 空组直接返回 int currentMax = nums[0]; // 当前位置的最大 int globalMax = nums[0]; // 全局最大 for(int i = 1; i < n; ++i){ currentMax = max(nums[i], currentMax + nums[i]); // 如果前面累加的结果小于当前字本身,则从当前位置重新开始计算 globalMax = max(globalMax, currentMax); // 更新全局最大值 } return globalMax; } int main(){ vector<int> arr = {-2, 1, -3, 4, -1, 2, 1, -5, 4}; cout << "最大连续: " << maxSubArraySum(arr) << endl; } ``` #### 关键点解释: - **currentMax** 表示以第 `i` 个结尾的“最大”。如果之前的累积为负,那么它对后续无贡献,可以选择丢弃。 - **globalMax** 记录了历史过程中遇到过的最大值。 --- ### 解法二:分治法 (Divide and Conquer) 将原组分为两部分,并递归地求解左右两侧及跨中间的部分最大。 代码较为冗长,在此略去详细实现,但可以作为进一步学习的方向。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值