收藏关注不迷路!!
🌟文末获取源码+数据库🌟
感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
系统介绍
长期不良的坐姿对脊柱健康有着严重的影响,可能导致脊柱弯曲等问题,进而影响生命健康。因此,设计一种基于YOLOv5模型的坐姿监测系统,可以为人们提供及时的姿势纠正和健康提示,帮助他们养成良好的坐姿习惯。
该系统首先通过前端输入设备对人体坐姿进行图像采集,获取用户在不同场景下的坐姿信息。接下来,利用YOLOv5模型进行训练和权重模型的构建,实现对图像中人体坐姿的智能检测和分类识别。YOLOv5是一种高效的目标检测模型,能够快速准确地识别图片中的不同物体,并具有较高的性能和精度。
通过该系统,用户可以及时了解自己的坐姿是否符合健康标准,系统可以对不良坐姿进行智能识别和提醒,帮助用户纠正不良的坐姿习惯。同时,系统还可以记录用户的坐姿数据,分析用户的坐姿习惯并生成报告,为用户提供科学的健康建议和指导。
这样的坐姿监测系统不仅可以引导人们养成良好的坐姿习惯,改善脊柱健康,还能提升人们对健康的关注和认识。通过科技手段帮助人们改善生活习惯,预防脊柱问题的发生,促进身体健康,具有积极的社会意义和健康教育意义。
综上所述,基于YOLOv5模型的坐姿监测系统将为人们提供一种便捷、智能的健康管理方式,引导人们关注坐姿对脊柱健康的影响,促使人们养成良好的坐姿习惯,从而改善生活质量,保障身体健康。
功能介绍
深度学习网络训练结果的质量离不开数据集的支持。一个好的训练模型需要收集大量的数据支持。我们经常使用的图像数据集就是由这些数据组成的。不同的应用领域有不同的数据集。因此,选择一个好的数据集对于深度学习的成功至关重要。选择数据集时,不仅要关注数据的规模、多样性和质量,还要考虑数据集是否代表了所研究问题的真实情况。由于我们研究的内容是学生坐姿行为识别,到目前为止,国内还缺乏关于学生坐姿行为的高质量公共数据集,所以我只能构建一个自建的学生坐姿行为识别。
在对系统进行需求分析与结构设计后,对系统的功能模块进行详细地划分,在前台模块中,坐姿识别模块包括图片、视频、摄像头上传与坐姿识别功能。核心的功能模块图如图6.2 所示。
图6.2 系统核心功能模块图
系统效果图
文章目录
目 录
第1章 引言 1
1.1 研究背景及意义 1
1.2国内外研究现状 2
1.2.1 国内研究现状 2
1.2.2 国外研究现状 3
1.3 论文组织架构 4
第2章 相关理论及技术介绍 5
2.1 卷积神经网络概述 5
2.2 卷积神经网络理论基础 6
2.3 激励函数与损失函数 7
2.3.1 激励函数 7
2.3.2 损失函数 8
2.4 优化算法 9
2.5 YOLOv5算法 9
2.1.1 输入端 10
2.1.2 主干网络 12
2.1.3 Neck网络 13
2.1.4 输出端 13
2.5 本章小结 15
第3章 构建学生坐姿行为识别数据集 15
3.1 课堂学生的行为分类 15
3.2 数据采集 16
3.3 数据标注 17
3.4 数据增强 18
3.5 数据分析 19
3.6 本章小结 19
第4章 学生坐姿行为识别实验分析 19
4.1 学生坐姿识别算法整体流程 19
4.2 实验评价指标 20
4.3 数据集训练过程介绍 23
第5章 系统设计与实现 23
5.1 开发环境 24
5.2 需求分析 24
第6章 系统总体设计 25
6.1 开发环境 25
4.2 坐姿图片检测 26
4.3 坐姿视频检测 27
4.4 坐姿摄像头检测 28
第5章 总结与展望 29
5.1 总结 29
5.2 展望 30
参考文献 31
源码获取
下方名片联系我即可!!
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻