yolov5基于视频识别技术的学生坐姿监视器系统

收藏关注不迷路!!

🌟文末获取源码+数据库🌟

感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人


系统介绍

长期不良的坐姿对脊柱健康有着严重的影响,可能导致脊柱弯曲等问题,进而影响生命健康。因此,设计一种基于YOLOv5模型的坐姿监测系统,可以为人们提供及时的姿势纠正和健康提示,帮助他们养成良好的坐姿习惯。
该系统首先通过前端输入设备对人体坐姿进行图像采集,获取用户在不同场景下的坐姿信息。接下来,利用YOLOv5模型进行训练和权重模型的构建,实现对图像中人体坐姿的智能检测和分类识别。YOLOv5是一种高效的目标检测模型,能够快速准确地识别图片中的不同物体,并具有较高的性能和精度。
通过该系统,用户可以及时了解自己的坐姿是否符合健康标准,系统可以对不良坐姿进行智能识别和提醒,帮助用户纠正不良的坐姿习惯。同时,系统还可以记录用户的坐姿数据,分析用户的坐姿习惯并生成报告,为用户提供科学的健康建议和指导。
这样的坐姿监测系统不仅可以引导人们养成良好的坐姿习惯,改善脊柱健康,还能提升人们对健康的关注和认识。通过科技手段帮助人们改善生活习惯,预防脊柱问题的发生,促进身体健康,具有积极的社会意义和健康教育意义。
综上所述,基于YOLOv5模型的坐姿监测系统将为人们提供一种便捷、智能的健康管理方式,引导人们关注坐姿对脊柱健康的影响,促使人们养成良好的坐姿习惯,从而改善生活质量,保障身体健康。

功能介绍

深度学习网络训练结果的质量离不开数据集的支持。一个好的训练模型需要收集大量的数据支持。我们经常使用的图像数据集就是由这些数据组成的。不同的应用领域有不同的数据集。因此,选择一个好的数据集对于深度学习的成功至关重要。选择数据集时,不仅要关注数据的规模、多样性和质量,还要考虑数据集是否代表了所研究问题的真实情况。由于我们研究的内容是学生坐姿行为识别,到目前为止,国内还缺乏关于学生坐姿行为的高质量公共数据集,所以我只能构建一个自建的学生坐姿行为识别。

在对系统进行需求分析与结构设计后,对系统的功能模块进行详细地划分,在前台模块中,坐姿识别模块包括图片、视频、摄像头上传与坐姿识别功能。核心的功能模块图如图6.2 所示。
在这里插入图片描述

图6.2 系统核心功能模块图

系统效果图

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

文章目录

目 录
第1章 引言 1
1.1 研究背景及意义 1
1.2国内外研究现状 2
1.2.1 国内研究现状 2
1.2.2 国外研究现状 3
1.3 论文组织架构 4
第2章 相关理论及技术介绍 5
2.1 卷积神经网络概述 5
2.2 卷积神经网络理论基础 6
2.3 激励函数与损失函数 7
2.3.1 激励函数 7
2.3.2 损失函数 8
2.4 优化算法 9
2.5 YOLOv5算法 9
2.1.1 输入端 10
2.1.2 主干网络 12
2.1.3 Neck网络 13
2.1.4 输出端 13
2.5 本章小结 15
第3章 构建学生坐姿行为识别数据集 15
3.1 课堂学生的行为分类 15
3.2 数据采集 16
3.3 数据标注 17
3.4 数据增强 18
3.5 数据分析 19
3.6 本章小结 19
第4章 学生坐姿行为识别实验分析 19
4.1 学生坐姿识别算法整体流程 19
4.2 实验评价指标 20
4.3 数据集训练过程介绍 23
第5章 系统设计与实现 23
5.1 开发环境 24
5.2 需求分析 24
第6章 系统总体设计 25
6.1 开发环境 25
4.2 坐姿图片检测 26
4.3 坐姿视频检测 27
4.4 坐姿摄像头检测 28
第5章 总结与展望 29
5.1 总结 29
5.2 展望 30
参考文献 31

源码获取

下方名片联系我即可!!


大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

<think>嗯,用户想搭建一个基于YOLOv8和OpenPose的学生坐姿检测系统,需要知道依赖的软件和环境配置。首先,我得回忆一下YOLOv8和OpenPose各自的环境需求。YOLOv8通常基于PyTorch,所以需要Python环境、PyTorch、CUDA和cuDNN这些。而OpenPose可能需要CMake、OpenCV,还有可能需要GPU支持。另外,用户可能是在教育场景下使用,所以系统可能需要实时检测,因此环境配置要考虑到性能优化。 接下来,我需要分步骤整理软件依赖。首先确定基础环境,比如Python版本,3.8或3.9比较常见。然后是深度学习框架,YOLOv8需要Ultralytics库,这个库依赖PyTorch。PyTorch的版本要和CUDA版本对应,比如CUDA 11.8对应PyTorch 2.0。OpenPose方面,可能需要从源码编译,所以需要CMake、C++编译工具,还有OpenCV和cuDNN。另外,数据标注工具比如LabelImg或者CVAT也可能需要,虽然用户没提到,但实际开发中可能会用到。 然后考虑环境配置步骤,比如安装CUDA和cuDNN,这部分用户可能需要去NVIDIA官网下载对应版本。安装PyTorch时,要选择合适的命令。安装YOLOv8的话,直接用pip安装ultralytics。OpenPose的安装可能比较复杂,需要克隆仓库,编译,配置Python接口。此外,用户可能需要安装图像处理库如OpenCV和Pillow,以及可视化工具如Matplotlib。 可能遇到的问题包括版本兼容性,比如PyTorch和CUDA的版本是否匹配,OpenCV的版本是否支持OpenPose的编译。还有系统权限问题,安装CUDA可能需要管理员权限。用户可能没有提到,但实际应用中可能需要考虑模型集成的问题,比如如何将YOLOv8和OpenPose的输出结合起来,进行姿态分析。此外,实时检测需要处理视频流,可能需要FFmpeg或其他视频处理库。 最后,用户可能还需要知道如何验证安装是否成功,比如运行YOLOv8的检测脚本,测试OpenPose的关键点检测。这部分可以建议用户参考官方文档或提供的引用资料中的步骤,确保环境正确配置。同时,提醒用户注意硬件兼容性,比如GPU型号是否支持CUDA,确保驱动正确安装。</think>构建基于YOLOv8和OpenPose的学生坐姿检测系统需要以下关键软件与环境配置: ### 一、核心软件依赖 1. **深度学习框架** - **PyTorch**:YOLOv8基于PyTorch框架开发,推荐版本≥1.8 - **CUDA/cuDNN**:建议CUDA 11.3+与cuDNN 8.2+,支持GPU加速计算[^2] 2. **算法库** - **Ultralytics YOLOv8**:通过`pip install ultralytics`安装官方库 - **OpenPose**:需从源码编译安装或使用预编译版本,依赖Caffe框架 ```bash git clone https://github.com/CMU-Perceptual-Computing-Lab/openpose ``` 3. **图像处理库** - **OpenCV**:推荐4.5.4+版本,用于图像/视频处理 - **Pillow**:Python图像处理基础库 ### 二、环境配置步骤 1. **Python环境** ```bash conda create -n pose python=3.8 conda activate pose ``` 2. **PyTorch安装** ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 ``` 3. **YOLOv8安装** ```bash pip install ultralytics ``` 4. **OpenPose编译依赖** - CMake 3.12+ - NVIDIA GPU驱动470+ - Windows需安装Visual Studio 2019+ ### 三、辅助工具 1. **数据标注工具** - LabelImg:用于目标检测标注 - CVAT:支持姿态关键点标注的在线工具 2. **可视化工具** - TensorBoard:训练过程监控 ```bash pip install tensorboard ``` ### 四、系统验证方法 1. **YOLOv8测试** ```python from ultralytics import YOLO model = YOLO('yolov8n-pose.pt') # 加载预训练姿态检测模型[^2] results = model.predict('input.jpg') ``` 2. **OpenPose验证** ```bash ./build/examples/openpose/openpose.bin --video examples/media/video.avi ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QQ1039692211

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值