摘要
随着深度学习技术的快速发展,图像实例分割和语义分割在计算机视觉领域得到了广泛应用,尤其在自动驾驶、医学影像分析和智能监控等场景中表现出重要的应用价值。本文提出了一种基于YOLOv11-seg的图像实例分割与语义分割系统,系统设计包含用户登录和注册界面,旨在提升用户体验和数据安全性。该系统的核心在于YOLOv11-seg模型的应用,该模型在传统YOLO系列的基础上进行了改进,能够实现高效的分割任务。系统首先通过登录注册界面实现用户身份的管理,确保用户数据的安全性与隐私保护。用户可上传待处理图像,系统将调用YOLOv11-seg模型进行实例与语义分割,生成分割结果,并将分割后的图像与原图进行对比展示。为提高系统的可用性,本文还实现了图像预处理模块,以优化输入数据的质量,提升模型的分割准确率。通过实验验证,YOLOv11-seg在多个公开数据集上的表现均优于传统方法,尤其在处理复杂背景和多实例重叠的场景中显示出其强大的分割能力。系统的可视化模块将分割结果以用户友好的方式呈现,支持多种格式的图像导出,方便用户进行后续分析。最后,通过实际应用案例,讨论了系统在各类场景中的应用潜力及未来改进方向,强调了基于深度学习的图像分割技术在实际应用中的重要性与发展前景。
论文提纲
-
引言
1.1 研究背景与意义
1.2 当前图像分割技术现状
1.3 本文研究目标与创新点 -
相关技术综述
2.1 实例分割与语义分割概述
2.2 YOLO系列模型的发展历程
2.3 深度学习中的数据预处理技术
2.4 用户身份管理与数据安全 -
系统设计
3.1 系统架构与模块划分
3.2 用户3.2 用户登录与注册模块
3.3 图像上传与预处理模块
3.4 YOLOv11-seg模型实现
3.5 实例分割与语义分割结果展示
3.6 可视化与结果导出功能 -
YOLOv11-seg模型改进
4.1 模型架构与关键技术
4.2 训练数据集与训练过程
4.3 性能优化与模型评估
4.4 与其他分割模型的比较