概述
3d Objectron是一种适用于日常物品的移动实时3D物体检测解决方案。它可以检测2D图像中的物体,并通过在Objectron数据集上训练的机器学习(ML)模型估计它们的姿态.
下图为模型训练后推理的结果!
添加图片注释,不超过 140 字(可选)
算法
我们建立了两个机器学习管道来从单个RGB图像预测物体的3D边界框:一个是两阶段管道,另一个是单阶段管道。两阶段管道比单阶段管道快3倍,准确率相似或更好。单阶段管道擅长检测多个物体,而两阶段管道适用于单个主导物体。
单价段训练模型:
添加图片注释,不超过 140 字(可选)
我们的单级流技术路线图,如图所示,模型骨干具有基于MobileNetv2的编码器-解码器架构。我们采用多任务学习方法,同时预测物体的形状、检测和回归。形状任务根据可用的真实注释,例如分割,预测物体的形状信号。如果在训练数据中没有形状注释,则此步骤是可选的。对于检测任务,我们使用注释的边界框并适合高斯到盒子,其中心在盒子重心处,标准偏差与盒子大小成比例。检测的目标是预测具有峰值表示物体中心位置的此分布。回归任务估计八个边界框顶点的二维投影。为了获得边界框的最终3D坐标,我们利用了一个成熟的姿态估计算法(EPnP)。它可以恢复物体的3D边界框,而不需要先验知识。给定3D边界框,我们可以轻松地计算物体的姿态和大小。该模型足够轻,可以在移动设备上实时运行(在Adreno 650移动GPU上以26 FPS的速度运行)。
主要代码和结果
结果:
添加图片注释,不超过 140 字(可选)
主要代码:
with mp_objectron.Objectron(static_image_mode=True,
max_num_objects=5,
min_detection_confidence=0.5,
model_name='Shoe') as objectron:
for idx, file in enumerate(IMAGE_FILES):
image = cv2.imread(file)
##全部代码请联系--------------------------------
# Convert the BGR image to RGB and process it with MediaPipe Objectron.
results = objectron.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if not results.detected_objects:
print(f'No box landmarks detected on {file}')
continue
print(f'Box landmarks of {file}:')
annotated_image = image.copy()
for detected_object in results.detected_objects:
mp_drawing.draw_landmarks(
annotated_image, detected_object.landmarks_2d, mp_objectron.BOX_CONNECTIONS)
mp_drawing.draw_axis(annotated_image, detected_object.rotation,
detected_object.translation)
cv2.imwrite('/tmp/annotated_image' + str(idx) + '.png', annotated_image)
3D目标识别是计算机视觉领域的一个重要分支,它主要涉及在三维空间中识别和定位物体。这项技术在多个行业中都有广泛应用,比如自动驾驶汽车、机器人导航、虚拟现实(VR)、增强现实(AR)、医疗图像分析等。下面简要介绍3D目标识别的一些关键技术点和应用实例。
关键技术点
-
数据获取:3D目标识别的第一步是获取3D数据。这些数据可以通过多种方式获得,如激光雷达(LiDAR)、立体相机、深度相机等设备。每种方法都有其优缺点,选择合适的设备取决于具体的应用场景。
-
特征提取:从3D数据中提取有用的特征对于目标识别至关重要。常见的特征包括几何特征(如形状、大小)、纹理特征等。近年来,基于深度学习的方法在特征提取方面表现出了强大的能力,能够自动从大量数据中学习到有效的特征表示。
-
模型训练:利用机器学习或深度学习算法对提取的特征进行训练,构建分类器或检测器,以实现对不同3D目标的识别。常用的模型有卷积神经网络(CNN)、点云网络(PointNet)、图卷积网络(GCN)等。
-
目标检测与定位:在完成模型训练后,可以使用该模型来检测新输入的3D数据中的目标,并确定它们的位置。这一步骤可能还包括姿态估计,即确定目标相对于观察者的方向和角度。
应用实例
-
自动驾驶:通过安装在车辆上的传感器(如LiDAR)收集周围环境的3D信息,使用3D目标识别技术可以准确地检测行人、其他车辆、障碍物等,为自动驾驶系统提供决策支持。
-
机器人技术:在机器人导航和操作任务中,3D目标识别可以帮助机器人理解其工作环境,精确定位需要抓取或避开的物体。
-
虚拟现实与增强现实:在VR/AR应用中,3D目标识别技术使得虚拟对象能够与真实世界中的物体进行交互,提升用户体验的真实感和沉浸感。
-
医疗影像分析:在医学成像领域,3D目标识别可用于辅助医生更准确地诊断疾病,例如通过CT或MRI图像识别肿瘤位置及大小。
进行交互,提升用户体验的真实感和沉浸感。
- 医疗影像分析:在医学成像领域,3D目标识别可用于辅助医生更准确地诊断疾病,例如通过CT或MRI图像识别肿瘤位置及大小。
随着相关技术的不断进步,3D目标识别将在更多领域发挥重要作用,推动科技的发展和社会的进步。
计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!