85. 最大矩形 java解决

这是一个关于计算机科学中的算法问题,主要涉及动态规划、矩阵和单调栈。给定一个二维二进制矩阵,目标是找出只包含1的最大矩形并返回其面积。解题思路包括计算每个元素左边连续1的数量,然后枚举矩阵中的点来找到最大矩形。示例展示了不同输入矩阵的情况以及对应的输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

难度:困难
相关标签:栈、数组、动态规划、矩阵、单调栈

给定一个仅包含0 和 1 、大小为 rows x cols 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。

示例 1:


    输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
    输出:6
    解释:最大矩形如上图所示。
示例 2:
    输入:matrix = []
    输出:0
示例 3:
    输入:matrix = [["0"]]
    输出:0
示例 4:
    输入:matrix = [["1"]]
    输出:1
示例 5:
    输入:matrix = [["0","0"]]
    输出:0

提示:
    rows == matrix.length
    cols == matrix[0].length
    1 <= row, cols <= 200
    matrix[i][j] 为 '0' 或 '1'

解题:

1. 我们首先计算出矩阵的每个元素的左边连续 1 的数量,使用二维数组 left 记录,其中 left[i][j]        为矩阵第 i 行第 j 列元素的左边连续 1 的数量。
2. 对于矩阵中任意一个点,我们枚举 以该点作为右下角 的全 1 矩形。

class Solution {

     //自己写的(优化柱状暴力)
    public int maximalRectangle(char[][] matrix) {
        if( matrix == null )
            return 0;

        int x = matrix.length, y = matrix[ 0 ].length;

        //我们首先计算出矩阵的每个元素的左边连续 1 的数量,使用二维数组 left 记录,其中 left[i][j] 为矩阵第 i 行第 j 列元素的左边连续 1 的数量。
        int[][] left = new int[ x ][ y ];
        for ( int i = 0; i < x; i ++ ) {
            for ( int j = 0; j < y; j ++ ) {
                if( matrix[ i ][ j ] == '1' ) {
                    left[ i ][ j ] = ( j == 0 ? 0 : left[ i ][ j - 1 ] ) + 1;
                }
                System.out.print( left[ i ][ j ] + " " );
            }
            System.out.println();
        }

        //对于矩阵中任意一个点,我们枚举 以该点作为右下角 的全 1 矩形。
        int max = 0;
        int[][] dp= new int[ x  ][ y ];
        for ( int i = 0; i < x; i ++ ) {
            for ( int j = 0; j < y; j ++ ) {
                if( left[ i ][ j ] != 0 ) {
                    int width = left[ i ][ j ];
                    if ( max == 0 )
                        max = width * 1;
                    int high = 0, min = width;
                    for( int a = i; a >= 0; a -- ) {
                        high ++;
                        min = left[ a ][ j ] <= min ? left[ a ][ j ] : min;
                        if ( left[ a ][ j ] == 0 )
                            break;
                        if ( left[ a ][ j ] >= width ) {
                            if ( width <= min  )
                                max = ( width * high ) >= max ? width * high : max;
                            else max = ( min * high ) >= max ? min * high : max;
                        } else if ( left[ a ][ j ] < width ) {
                            if(left[ a ][ j ] <= min )
                                max = left[ a ][ j ] * high >= max ? left[ a ][ j ] * high : max;
                            else max = ( min * high ) >= max ? min * high : max;
                        }
                    }

                }
            }
        }

        return max;
    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值