链式前向星代码实现与理解

本文详细讲解了链式前向星的概念,强调了它与传统链表的区别,以及在插入和查找操作中的应用。通过代码示例解释了如何保存边的位置,并提到了寻找操作的两种方法:递归查找和从后向前找。文章适合已经理解前向星基础的读者深入学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前提:理解好什么是前向星?参照上一篇博客,然后看本文,会有所帮助

第二次更新讲解的内容

  1. head[]数组保存的是当前边的起点u 在边集数组中的位置
  2. next表示的是下一条边的位置,那么如何保存呢?我们并不是保存所有的边数,只是保存下一边的位置,和链表非常类似,所以就是链式,这就是点题
  3. 但是和我们常见的链式不太一样,我们是从后向前找,所以需要在更新head的时候,需要先记录下上一条边的位置,所以代码部分e[cnt].next = head[u]; head[u] = cnt++; 是先保存next,在更新数值,然后递归输出结果
  4. 所以有了下面的代码
  5. 刷题目熟悉技巧,重中之重了
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = 10000;
struct Edge
{
    int u, v, w ,next;
}e[maxn];

int head[maxn],cnt =1;//统计边的数据

void addEdge(int u, int v, int w){
    e[cnt].u = u;
    e[cnt].v = v;
    e[cnt].w = w;
    e[cnt].next = head[u]; 
    head[u] = cnt++;        
}
void finde(int k)
{
    if(k != -1)
    {
        cout << e[k].u << " " << e[k].v << " " << e[k].w << endl;
        finde(e[k].next);
    }
}

int main()
{
    int n, m; cin >> n >> m;
    memset(head,-1,sizeof(head));
    for(int i = 1;i <= m;i++)
    {   
        int x, y, z; cin >> x >> y >> z;
        addEdge(x,y,z);
    }
    //接下来开始输出
    for(int i = 1;i <= n;i++){
        //输出head[i]为起点的所有的边数
        if(head[i] != -1)
        {
            cout << "i: " << i << endl;
            finde(head[i]);
        }
            
    }
    return 0;
}
// 5 7
// 1 2 1
// 2 3 2
// 3 4 3
// 1 3 4
// 4 1 5
// 1 5 6
// 4 5 7
链式前向星
  1. 前向星:使用前向星的head[i]数组表示方法,但不排序。
  2. head[i]:表示边集的序号
  3. 链式:head[i] 表示以i为起点对应的边集中的编号,每次更新i的时候,将之前保存的数值,放入next中保存,这就有了寻找的踪迹,和并查集查找父节点的方式一样
  4. 综合起来就是链式前向星
链式前向星的插入
int cnt ; // 记录边数
int head[maxn]; // 记录边集对应的边的位置 
void addedge(int u, int v, int w)
{
    edge[cnt].to = v;
    edge[cnt].w = w;
    //保存着以起点u对应着的上一边表的 在边集中的位置,从而实现递归查找
    edge[cnt].next = head[u];
    //保存的是起点u最后对应的边数,所以是最大的
    head[u] = cnt++;//更新u对应的边,因为可能很多条,所以先之前的给保存,然后更新
}

难点:

  1. next含义:表示与当前起点相同的边的下一条边 对应着的在 边集中的位置
  2. head[u] :保存的就是 在边集中对应的文字
  3. 可以和并查集查找父节点 不进行路径压缩的方式相同, 所以输出的时候可以采用递归函数写
链式前向星的寻找

方法一:采用递归查找(从后往前或者从前往后)

void find(int u, int k) //u:表示起点 ,k 表示在边集中的标号
{
	//正序
    if(k==-1)
        return;
    find(u,edge[k].next);
    cout << u << " " << edge[k].to << " " << edge[k].w << endl;
}
//逆序
void find(int u, int k)
{
    if(k!=-1)
    {
        find(u,edge[k].next);
        cout << u << " " << edge[k].to << " " << edge[k].w << endl;
    }
}

方法二:从后向前找

for(int j = head[i] ;j != -1;j = edge[j].next)
{
    cout << i << " " << edge[j].to << " " << edge[j].w << endl;
}

链式前向星完整代码
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
////#define LOCAL

using namespace std;
//链式前向星:
// 前向星:不排序,但是head[i]:表示边集的序号  
// 链式:head[i] 表示以i为起点对应的序号,每次更新i的时候,将之前保存的数值放在next中保存
// 这就有了寻找的踪迹,和并查集查找父节点的方式一样
const int maxn = 1000;
struct Edge
{
    int next, to, w; // to:终点 next:以i为起点的下一条边的位置  w:权值
}edge[maxn];
int cnt ; // 记录边数
int head[maxn]; // 记录边集对应的边的位置 
void addedge(int u, int v, int w)
{
    edge[cnt].to = v;
    edge[cnt].w = w;
    //保存着以起点u对应着的上一边表的 在边集中的位置,从而实现递归查找
    edge[cnt].next = head[u];
    //保存的是起点u最后对应的边数,所以是最大的
    head[u] = cnt++;//更新u对应的边,因为可能很多条,所以先之前的给保存,然后更新
}

void find(int u, int k)
{
    if(k==-1)
        return;
    find(u,edge[k].next);
    cout << u << " " << edge[k].to << " " << edge[k].w << endl;
}

int main()
{
    int n, m;
    cin >> n >> m;
    //一开始所有的head都设置为-1,
    memset(head,-1,sizeof(head));
    for(int i = 1; i <= m;i++)
    {
        int u, v, w;
        cin >> u >> v >> w;
        addedge(u,v,w);
        //双向
        // addedge(v,u,w);
    }
    //开始输出
    for(int i = 1;i <= n;i++)
    {
        cout << i << endl;
        //j:表示的当前点对应的边集中的标号,标号保存着对应的终点以及下一条同起点的编号
        // find(i, head[i]);
        // cout << endl;
        for(int j = head[i] ;j != -1;j = edge[j].next)
        {
            cout << i << " " << edge[j].to << " " << edge[j].w << endl;
        }
        cout << endl;
    }
    return 0;
}
// 5 7
// 1 2 1
// 2 3 2
// 3 4 3
// 1 3 4
// 4 1 5
// 1 5 6
// 4 5 7

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值