摘 要
随着互联网技术的不断提高,人民生活水平也不断提高,私家车在每家每户都流行起来,众多的交通事故给群众生活带来了不幸,伴随着研究的深入,无人驾驶汽车的实用性逐渐备受人民关注。然而,在无人驾驶中,交通标志识别是一项重要的任务。本文基于MATLAB设计并仿真交通标志识别系统,主要内容为基于交通标志识别定位、形态学操作原理、模板匹配算法等原理对交通标志进行图像读取、颜色分量提取、去除干扰、图像分割、图像识别五大模块,通过MATLAB仿真识别图像当中的交通标志。交通标志识别系统很大程度上减少了交通事故频发现象,也为未来的无人驾驶、无人机导航以及导盲拐杖奠定了一定的理论基础和实践依据。
关键词:交通标志;图像分割;形态学;模板匹配;
系统结构流程图
用matlab对水下激光成像系统进行仿真,激光从水上传输到水下,碰到物体返回水面上的相机镜头,最终到达相机,通过相机镜头后,还有多少光能量,是否低于相机阈值。可以估算水下激光成像系统的极限距离。也可以根据所需传输距离,来反推需要的激光器功率大小及脉冲宽度,相机口径的大小,和最低可探照度。导波传输的场分布。这样,图形简单明了,可以加强我们对金属波导装置的理解与实际应用。
把浊度与水体的衰减度联系到一起,由于水体的衰减度不好测量,可以通过浊度计测出浊度来大概估计一下水体的衰减度。
交通标志在进行使用的过程当中,最基本的就是通过对这些交通标志图来进行一定的识别作用,也就是通过对图像的整体处理和识别来进行改变,将其进行输入原始的数据利用一系列图像处理技术方法来进行采用,在色彩方面,也通过进行一系列的处理提取出其中所存在感兴趣的领域,与之前所存在的模式进行比较获取,其中所存在的最大值来将进行指定和发展,这是整体的系统结构流程图。我总结为下图所示
交通标志检测系统结构流程图如下:
图3-1基于MATLAB的交通标志自动检测系统结构流图
图像处理与识别系统的构成
我们在使用微机图像处理系统的过程当中,可以将其总结为以下三个部分:
(1)采集部件
我们在进行采集的过程当中,就是通过将原始的图像数据来进行加入到计算机整体的内部因素当中,并且在整体的采集中也将其中所存在的信号转换为对应的数字,在计算机接收之后再进行整体的运算操作。
(2)图像处理部件
我们相聚于危机的图像处理过程当中,图像处理工作室由微信来进行完成的危机的扩展,汤也具有对应的采集卡,我们再进行处理的过程当中,主要将其储存到计算机的内存中来,实现各项步骤能够通过直接使用的内存采集卡来进行交换工作,提高图像处理过程中的速度所在。
(3)识别结果的输出部件
图像能够实现输出和处理的过程是最终的目的,并且我们从广义的角度来讲,对图像进行输出,我们可以表现为以下两种模式,第一种就是能够根据图像处理的结果来做出对应的预判,比如说在进行质量检测的过程当中可能会存在合格和不合格的现象,在输出的过程当中,我们一定要以其作为最终的形式来进行表达,而这