Kubernetes(K8s)集群中使用 GPU

在 Kubernetes(K8s)集群中使用 GPU,需要完成安装驱动、部署插件、配置 containerd、实现 GPU 虚拟化及部分使用等一系列步骤,下面为你详细介绍。

1. 安装 GPU 驱动

以 NVIDIA GPU 为例,因为在深度学习和机器学习场景中 NVIDIA GPU 应用广泛,以下是在 Linux 系统上安装 NVIDIA 驱动的步骤:

1.1 检查系统和 GPU 信息

首先需要确认系统的内核版本和 GPU 型号,使用以下命令:

uname -r  # 查看内核版本
lspci | grep -i nvidia  # 查看 GPU 型号
1.2 禁用 Nouveau 驱动

Nouveau 是 Linux 系统默认的开源 NVIDIA 驱动,需要先禁用它,以免和 NVIDIA 官方驱动冲突。编辑 /etc/modprobe.d/blacklist-nouveau.conf 文件:

sudo nano /etc/modprobe.d/blacklist-nouveau.conf

添加以下内容:

blacklist nouveau
options nouveau modeset=0

保存文件后,更新 initramfs:

sudo update-initramfs -u
1.3 安装 NVIDIA 驱动

可以从 NVIDIA 官方网站下载适合你 GPU 型号和系统内核版本的驱动程序,也可以使用包管理器进行安装。以 Ubuntu 系统为例:

sudo apt update
sudo apt install nvidia-driver-<version>  # <version> 替换为适合的驱动版本号

安装完成后,重启系统:

sudo reboot

重启后,使用 nvidia-smi 命令验证驱动是否安装成功,如果能正常显示 GPU 信息,则说明驱动安装成功。

2. 部署 NVIDIA 设备插件

NVIDIA 设备插件是一个 Kubernetes 插件,用于向 K8s 集群暴露 GPU 资源。可以使用以下 YAML 文件进行部署:

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: nvidia-device-plugin-daemonset
  namespace: kube-system
spec:
  selector:
    matchLabels:
      name: nvidia-device-plugin-ds
  template:
    metadata:
      annotations:
        scheduler.alpha.kubernetes.io/critical-pod: ""
      labels:
        name: nvidia-device-plugin-ds
    spec:
      tolerations:
      - key: CriticalAddonsOnly
        operator: Exists
      - key: nvidia.com/gpu
        operator: Exists
        effect: NoSchedule
      containers:
      - image: nvcr.io/nvidia/k8s-device-plugin:v0.14.1
        name: nvidia-device-plugin-ctr
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop: ["ALL"]
        volumeMounts:
          - name: device-plugin
            mountPath: /var/lib/kubelet/device-plugins
      volumes:
        - name: device-plugin
          hostPath:
            path: /var/lib/kubelet/device-plugins

使用以下命令部署该 DaemonSet:

kubectl apply -f nvidia-device-plugin.yaml

3. 配置 containerd

3.1 修改 containerd 配置文件

通常,containerd 的配置文件位于 /etc/containerd/config.toml。可以通过以下命令编辑该文件:

sudo nano /etc/containerd/config.toml

在文件中添加或修改以下内容:

[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc.options]
  SystemdCgroup = true
  BinaryName = "runc"

[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.nvidia]
  privileged_without_host_devices = false
  runtime_engine = ""
  runtime_root = ""
  runtime_type = "io.containerd.runc.v2"
  [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.nvidia.options]
    BinaryName = "/usr/bin/nvidia-container-runtime"
    SystemdCgroup = true

[plugins."io.containerd.grpc.v1.cri"]
  default_runtime_name = "nvidia"

上述配置中,我们添加了一个名为 nvidia 的运行时,其对应的二进制文件为 /usr/bin/nvidia-container-runtime,并将其设置为默认运行时。

3.2 安装 nvidia-container-toolkit

nvidia-container-toolkit 能让容器运行时(如 containerd)支持 GPU 设备。可以使用包管理器进行安装,例如在 Ubuntu 系统上:

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
   && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
   && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
         sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
         sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
3.3 重启 containerd 服务

修改配置文件后,需要重启 containerd 服务使配置生效:

sudo systemctl restart containerd

4. GPU 虚拟化及部分使用

4.1 GPU 虚拟化

在 K8s 中,NVIDIA 提供了一些技术来实现 GPU 虚拟化,例如 NVIDIA Multi - Process Service(MPS)和 NVIDIA vGPU。

  • NVIDIA MPS:允许一个物理 GPU 被多个进程同时使用,通过时间片轮转的方式实现资源共享。要使用 MPS,需要在节点上启动 MPS 服务,然后在容器中配置使用 MPS。
  • NVIDIA vGPU:将一个物理 GPU 分割成多个虚拟 GPU 实例,每个实例有独立的显存和计算资源。使用 vGPU 需要特定的硬件和软件许可证支持。
4.2 GPU 部分使用

在 K8s 中,可以通过请求部分 GPU 资源来实现 GPU 的部分使用。在 Pod 的 YAML 文件中,可以通过 resources.requestsresources.limits 字段来请求和限制 GPU 资源。例如:

apiVersion: v1
kind: Pod
metadata:
  name: gpu-partial-use-pod
spec:
  containers:
  - name: gpu-partial-use-container
    image: nvcr.io/nvidia/cuda:11.0-base
    resources:
      requests:
        nvidia.com/gpu: 0.5  # 请求 0.5 个 GPU
      limits:
        nvidia.com/gpu: 0.5  # 限制最多使用 0.5 个 GPU
    command: ["nvidia-smi"]

需要注意的是,部分 GPU 资源请求的支持依赖于 NVIDIA 驱动和设备插件的版本,某些版本可能不支持分数形式的 GPU 资源请求。

5. 验证配置

部署完成后,可以创建一个简单的 Pod 来验证 GPU 是否可以正常使用。以下是一个示例 Pod 的 YAML 文件:

apiVersion: v1
kind: Pod
metadata:
  name: gpu-test-pod
spec:
  containers:
  - name: gpu-test-container
    image: nvcr.io/nvidia/cuda:11.0-base
    resources:
      requests:
        nvidia.com/gpu: 1
      limits:
        nvidia.com/gpu: 1
    command: ["nvidia-smi"]

使用以下命令创建该 Pod:

kubectl apply -f gpu-test-pod.yaml

然后查看 Pod 的日志:

kubectl logs gpu-test-pod

如果能看到 NVIDIA GPU 的信息,则说明配置成功。

通过以上步骤,你可以在使用 containerd 作为容器运行时的 K8s 集群中正确配置和使用 GPU 资源,并实现一定程度的 GPU 虚拟化和部分使用。

### 解决 VSCode 中 JSON 文件只读问题的方法 当遇到在 VSCode 编辑器中无法编辑 JSON 文件的情况时,这通常是因为文件被标记为只读。为了取消这种状态并允许正常编辑,可以通过调整设置来解决问题。 对于因权限或环境配置引起的只读情况,建议按照如下方式处理: 通过修改VSCode的特定设置选项能够有效解决该类问题,在VSCode内依次执行以下命令可达到目的:点击左下角齿轮图标进入设置界面;利用搜索栏查找`Shebang`相关配置项;找到名为`Run Code Configuration: Respect Shebang`的选择框,并确保其处于启用状态[^4]。不过需要注意的是,上述操作主要是针对由插件引发的只读状况,而并非操作系统层面设定的真正意义上的只读属性。 另外一种常见的情形是由于文件本身或者所在磁盘分区设置了只读标志位所造成的。此时应当检查目标JSON文档以及它所在的存储设备的状态,确认是否有外部因素干扰写入权限。如果是这种情况,则需前往资源管理器或者其他相应工具里解除对应的限制条件后再尝试编辑。 最后值得注意的一点是在某些特殊环境下(比如使用PlatformIO开发框架配合SDCC编译器),可能还会碰到因为IDE未能正确解析自定义语法而导致误报只读警告的现象。对此可通过适当调整预处理器宏定义的方式绕过此类伪异常,例如向项目源码引入`__SDCC_SYNTAX_FIX`参数以便让VSCode更好地理解非标准C语言结构[^2]。 尽管以上措施有助于缓解大多数场景下的只读难题,但在实际应用过程中仍应具体情况具体分析,必要时查阅官方文档获取更详尽的帮助信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值