图论 —— floyd算法(全源最短路问题 / 无向图找最小环)

Floyd算法针对包含n个节点且无负权环的图,能有效解决全源最短路径问题及寻找无向图中的最小环。算法的时间复杂度为O(n^3)。在全源最短路问题中,通过邻接矩阵存储边的权重,并用二维数组记录最短路径;在找最小环时,算法同样发挥作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

floyd算法:

对于一个含有nnn个结点的无负环图GGG(通常用邻接矩阵存储),floyd算法可以用于解决全源最短路问题,和查找无向图中最小环,时间复杂度O(n3)O(n^3)O(n3)



①全源最短路问题:

邻接矩阵g[i][j]g[i][j]g[i][j]:表示边i→ji\rarr jij的距离,INF表示i,ji,ji,j之间无边直接相连

dist[i][j]dist[i][j]dist[i][

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值