目录
1、优化算法
寻找使得函数达到最优值的参数
2、批量梯度下降算法
缺点:只能找到局部最优(是一种贪心的策略)
无法解决鞍点问题(梯度为0的点)
import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
#设定一个初始值
w=1.0
#建立模型
def forward(x):
return x*w
#计算损失函数
def cost(xs,ys):
cost = 0
for x,y in zip(xs,ys):
y_pred = forward(x)
cost += (y_pred - y)**2
return cost/len(xs)
#计算梯度
def gradient(xs,ys):
gradient = 0
for x,y in zip(xs,ys):
gradient += 2*x*(x*w-y)
return gradient/len(xs)
#训练
print('Predict (before training)', 4, forward(4))
cost_list = []
for epoch in range(100):
cost_val = cost(x_data, y_data)
cost_list.append(cost_val)
gradient_val = gradient(x_data, y_data)
#学习率为0.01
w-=0.01*gradient_val
print("Epoch:",epoch,"w={:.2f}".format(w),"cost={:.2f}".format(cost_val))
print('Predict (after training)', 4, forward(4))
#可视化
plt.plot(cost_list)
plt.xlabel("epoch")
plt.ylabel("cost")
plt.show()
3、随机梯度下降
import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
#设定一个初始值
w=1.0
#建立模型
def forward(x):
return x*w
#计算损失函数
def loss(x,y):
y_pred=forward(x)
return (y-y_pred)**2
#计算梯度
def gradient(x,y):
return 2*x*(x*w-y)
#训练
print('Predict (before training)', 4, forward(4))
loss_list = []
for epoch in range(100):
for x,y in zip(x_data, y_data):
gradient_val = gradient(x,y)
#学习率为0.01
w-=0.01*gradient_val
l=loss(x,y)
loss_list.append(l)
print("Epoch:",epoch,"w={:.2f}".format(w),"loss={:.2f}".format(l))
print('Predict (after training)', 4, forward(4))
#可视化
plt.plot(loss_list)
plt.xlabel("epoch")
plt.xlim(-10,100)
plt.ylabel("cost")
plt.grid(True)
plt.show()