《PyTorch深度学习实践》(七)处理多维特征的输入

1、糖尿病数据集

diabetes.csv | Kaggle

2、多维特征输入

import numpy as np
import torch
from matplotlib import pyplot as plt

xy=np.loadtxt(r'E:\PyTorchStudy\code\diabetes.csv', delimiter=',',dtype=np.float32,skiprows=1)
x_data=torch.from_numpy(xy[:,:-1])
y_data=torch.from_numpy(xy[:,[-1]])

class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8,6)
        self.linear2 = torch.nn.Linear(6,4)
        self.linear3 = torch.nn.Linear(4,1)
        self.activate = torch.nn.Sigmoid()#激活函数

    def forward(self, x):
        x=self.activate(self.linear1(x))
        x=self.activate(self.linear2(x))
        x=self.activate(self.linear3(x))
        return x
model = Model()

criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

loss_list = []
for epoch in range(100000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    loss_list.append(loss.item())

    optimizer.zero_grad()
    loss.backward()

    optimizer.step()

print(min(loss_list))
plt.plot(loss_list)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.grid(True)
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值