1、糖尿病数据集
diabetes.csv | Kaggle
2、多维特征输入
import numpy as np
import torch
from matplotlib import pyplot as plt
xy=np.loadtxt(r'E:\PyTorchStudy\code\diabetes.csv', delimiter=',',dtype=np.float32,skiprows=1)
x_data=torch.from_numpy(xy[:,:-1])
y_data=torch.from_numpy(xy[:,[-1]])
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8,6)
self.linear2 = torch.nn.Linear(6,4)
self.linear3 = torch.nn.Linear(4,1)
self.activate = torch.nn.Sigmoid()#激活函数
def forward(self, x):
x=self.activate(self.linear1(x))
x=self.activate(self.linear2(x))
x=self.activate(self.linear3(x))
return x
model = Model()
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
loss_list = []
for epoch in range(100000):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(min(loss_list))
plt.plot(loss_list)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.grid(True)
plt.show()
