数值计算方法(1)

这篇博客介绍了数值计算的基础概念,包括Rolle定理、微分中值定理、泰勒定理以及线性相关和线性无关的概念。还讨论了范德蒙德行列式、方阵的初等变换和行列式的性质。进一步讲解了方程组解的存在唯一性,对称矩阵和正定矩阵的特性,以及向量内积的基本概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

绪论

1.rolle定理与微分中值定理

罗尔定理:如果 R 上的函数 f(x) 满足以下条件:
(1)在闭区间 [a,b] 上连续
(2)在开区间 (a,b) 内可导
(3)f(a)=f(b)
则至少存在一个 ξ∈(a,b),使得 f’(ξ)=0。
拉格朗日中值:如果函数 f(x) 满足:
1)在闭区间[a,b]上连续;
2)在开区间(a,b)内可导。
那么:在(a,b)内至少有一点ξ(a<ξ<b),
使等式 f(b)-f(a)=f′(ξ)(b-a) 成立。
柯西定理:如果函数f(x)及F(x)满足
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
(3)对任一x∈(a,b),F’(x)≠0
那么在(a,b) 内至少有一点ξ,使等式
f(b)−f(a)F(b)−F(a)=f′(ξ)F′(ξ)\frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(ξ)}{F'(ξ)}F(b)F(a)f(b)f(a)=F(ξ)f(ξ)成立

2.泰勒定理

泰勒展开式在这里插入图片描述在这里插入图片描述

3.线性有关与线性无关

在向量空间V的一组向量A:α1,α2,…αm\alpha_1,\alpha_2,…\alpha_mα1,α2,αm,如果存在不全为零的数 k1, k2, ···,km , 使
k1α1+k2α2…+kmαm=0k_1\alpha_1+k_2\alpha_2…+k_m\alpha_m=0k1α1+k2α2+kmαm=0
则称向量组A是线性相关的 ,否则数 k1, k2, ···,km全为0时,称它是线性无关。
由此定义看出α1,α2,…αm\alpha_1,\alpha_2,…\alpha_mα1,α2,αm是否线性相关,就看是否存在一组不全为零的数 k1, k2, ···,km使得上式成立。
即是看k1α1+k2α2…+kmαm=0k_1\alpha_1+k_2\alpha_2…+k_m\alpha_m=0k1α1+k2α2+km

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值