绪论
1.rolle定理与微分中值定理
罗尔定理:如果 R 上的函数 f(x) 满足以下条件:
(1)在闭区间 [a,b] 上连续
(2)在开区间 (a,b) 内可导
(3)f(a)=f(b)
则至少存在一个 ξ∈(a,b),使得 f’(ξ)=0。
拉格朗日中值:如果函数 f(x) 满足:
1)在闭区间[a,b]上连续;
2)在开区间(a,b)内可导。
那么:在(a,b)内至少有一点ξ(a<ξ<b),
使等式 f(b)-f(a)=f′(ξ)(b-a) 成立。
柯西定理:如果函数f(x)及F(x)满足
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
(3)对任一x∈(a,b),F’(x)≠0
那么在(a,b) 内至少有一点ξ,使等式
f(b)−f(a)F(b)−F(a)=f′(ξ)F′(ξ)\frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(ξ)}{F'(ξ)}F(b)−F(a)f(b)−f(a)=F′(ξ)f′(ξ)成立
2.泰勒定理
泰勒展开式
3.线性有关与线性无关
在向量空间V的一组向量A:α1,α2,…αm\alpha_1,\alpha_2,…\alpha_mα1,α2,…αm,如果存在不全为零的数 k1, k2, ···,km , 使
k1α1+k2α2…+kmαm=0k_1\alpha_1+k_2\alpha_2…+k_m\alpha_m=0k1α1+k2α2…+kmαm=0
则称向量组A是线性相关的 ,否则数 k1, k2, ···,km全为0时,称它是线性无关。
由此定义看出α1,α2,…αm\alpha_1,\alpha_2,…\alpha_mα1,α2,…αm是否线性相关,就看是否存在一组不全为零的数 k1, k2, ···,km使得上式成立。
即是看k1α1+k2α2…+kmαm=0k_1\alpha_1+k_2\alpha_2…+k_m\alpha_m=0k1α1+k2α2…+km