Floyd判圈算法

Floyd判圈算法,又称龟兔赛跑算法,用于判断链表中是否存在环并找出环的起点和长度。通过两个不同速度的指针,若它们相遇则说明存在环。相遇点确定后,可以计算环的长度和起点。在LeetCode的第142号问题中,此算法得到应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Floyd判圈算法

算法概述

Floyd 判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm)。

是一个可以在有限状态机、迭代函数或者链表上判断是否存在环,求出该环的起点与长度的算法。

思路

设两个指针th已不同步伐(t一步h两步)从起点出发,如果存在环,两个指针必有某时刻相遇。

解决问题

是否存在环

设两个指针th已不同步伐(t一步h两步)从起点出发:

  1. 如果快指针到达了链表尾部,两者都没相遇,则没有环。
  2. 如果两个指针相遇,则有环。

环的长度

两个指针相遇,设相遇点为M,让h指针留在M点,t指针继续前进,每次一步。再次到达M点时,前进的步数即为环的长度。

环的起点

两个指针相遇,设相遇点为M,让h指针留在M点,t指针回到原点head,两个指针同时已每次一步的步伐前进,再次相遇时即为环的起点。

证明

假设

相遇时慢指针走过节点数i

链表起点到环的起点长度为m

环的长度为n

相遇的位置与环的起点距离为k

则有

i = m + a * n + k

因为快指针速度为慢指针2倍

2 * i = m + b * n + k

a b分别为慢指针和快指针绕环的圈数。

两式相减得

i = (b - a) * n

i为环的长度的整数倍

此时将t指针放回起点head,两指针均已每次一步的速度前进,当t指针走到环起点时,前进了m步,h指针与head的距离为i + m。又因为**i为环的长度的整数倍**,所以h指针此时也在环的起点上。

代码实现

//leetcode142:Floyd判圈算法
public ListNode floydCycle(ListNode head) {
    if (head == null || head.next == null) return null;
    ListNode slow = head.next;
    ListNode fast = head.next.next;
    while (fast != null && fast.next != null) {
        if (fast == slow) {
            fast = head;
            while(fast != slow) {
                slow = slow.next;
                fast = fast.next;
            }
            return  fast;
        }
        slow = slow.next;
        fast = fast.next.next;
    }
    return null;
}

参考资料

Floyd判圈算法(龟兔赛跑算法)

LeetCode 第 142 号问题:环形链表 II

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值