- 博客(31)
- 收藏
- 关注
原创 【笔记】动手学Ollama 第七章 应用案例 Dify应用
Dify动手实践教程-课程详情 | Datawhale。7.2 Dify 接入 Ollama 部署的本地模型。配置完毕后,便可以在Dify中使用Ollama。点击Dify右上方头像,选择“设置”在模型供应商处搜索Ollama并安装。
2025-08-21 04:52:46
281
原创 【笔记】动手学Ollama 第七章 应用案例1 搭建本地AI Copilot编程助手
还是在设置处,你可以通过Configuration Profile设置不同的使用模式,日常编码可以使用本地小模型,架构设计时可以借助API使用高级模型。
2025-08-21 03:43:43
650
原创 【笔记】动手学Ollama 第五章 Ollama 在 LangChain 中的使用 - Python 集成
本文介绍了如何在Python中集成Ollama模型到LangChain框架。主要内容包括:1)环境设置,包括Conda环境配置和依赖安装;2)基本使用示例,如对话模板、流式输出、工具调用和多模态处理;3)进阶用法,包括多轮对话管理、自定义提示模板设计和RAG问答系统实现。通过详细的代码示例,展示了如何利用LangChain的管道操作符"|"构建处理流程,实现模型调用、上下文管理和检索增强等功能。这些技术可应用于构建智能对话系统、信息检索工具等AI应用场景。
2025-08-20 14:03:27
604
原创 【笔记】动手学Ollama 第四章 Ollama REST API
通过Ollama实例化Client或AsynClint来创建自定义客户端。host:要连接的Ollama主机timeout:请求超时时间。
2025-08-18 16:49:09
845
原创 【笔记】动手学Ollma 第三章 自定义使用 Ollama
GGUF是一种用于保存经过微调的语言模型的文件格式,方便用户在不同平台和环境之间共享和导入模型。示例:1、下载模型GGUF文件Qwen-20.5b模型下载链接:2、新建一个Modelfile文件,内容为:Modefile是模型配置文件。3、在Ollama中创建模型(在Modefile文件所在的目录下运行以下终端指令)4、终端内运行模型Ollama 支持自定 义Prompt,可以让模型生成更符合用户需求的文本。示例:2、创建模型下载完成后运行 ollama list 查看。3、运行模型。
2025-08-17 01:41:21
679
原创 【笔记】动手学Ollma 第二章 Ollama 安装与配置
正文详见:2.2 Windowshttps://datawhalechina.github.io/handy-ollama/#/C2/2.%20Ollama%20%E5%9C%A8%20Windows%20%E4%B8%8B%E7%9A%84%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AE 点击左上方Settings。 通过修改Model location来更改模型存储的位置。
2025-08-17 00:22:24
408
原创 【笔记】动手学Ollma 第一章 Ollama介绍
Ollma是一个开源的大模型服务工具,可以用于在本地部署并运行大模型。极大的简化了模型的部署和管理工作。
2025-08-16 19:33:04
220
原创 【笔记】Handy Multi-Agent Tutorial 第四章 CAMEL框架下的RAG应用(实践)
如OpenAI,Cohere,Mistral等的API服务,适用于项目或工程中需要方便直接的使用嵌入且不介意数据隐私的情况:适用于对数据隐私有要求或需要自定义模型本地部署的情况前者相当于大模型API,后者相当于本地LLM。
2025-07-28 20:46:47
391
原创 【笔记】Dify动手实践教程 Task 04
正文详见:dify使用mysql及echart - 飞书云文档Text2SQL:Text2SQL 是一种将自然语言问题(如“查询2023年销售额最高的产品”)自动转换为结构化查询语言(SQL)的技术。它通过理解用户意图、识别关键实体(时间、对象、操作)并将其精准映射到数据库表结构和字段,最终生成可执行的 SQL 语句。你可以在这个位置修改安装路径将MySQL下载到其他文件后,添加到环境变量PATH执行可能会报错。
2025-07-26 01:28:58
876
原创 【笔记】Handy Multi-Agent Tutorial 第四章: CAMEL框架下的RAG应用 (简介)
检索增强生成RAG(Retrieval-Augmented Generation)是一种通过从外部资源获取事实来提高生成式AI模型准确性和可靠性的技术。将生成式AI服务与外部资源相连,特别是那些富含最新技术细节的资源。用于存储和检索高维向量数据的数据库系统。向量存储: 支持存储大量高维向量数据,通常还关联其他元数据。相似度搜索: 实现高效的近似最近邻(Approximate Nearest Neighbor,ANN)搜索,快速找到与查询向量最相似的向量。扩展性。
2025-07-25 20:58:28
351
原创 【笔记】Handy Multi-Agent Tutorial 第三章: CAMEL框架简介及实践(实践部分)
正文详见:Handy Multi-Agent Tutorial - 飞书云文档。
2025-07-23 23:18:43
662
原创 【笔记】wow-rag 第5课-流式部署
wow-rag/notebooks/第5课-流式部署.ipynb at main · datawhalechina/wow-rag。流式输出是一种逐步传输数据的技术,允许服务器将数据分批发送给客户端,而不是一次性加载全部内容。流式输出是一种逐步传输数据的技术,允许服务器将数据分批发送给客户端,而不是一次性加载全部内容。response_gen是一个生成器对象,它会逐个产出查询结果的文本块。similarity_top_k=3:返回语义相似度前三的结果。streaming=True:启动流式输出。
2025-07-23 20:47:11
407
原创 【笔记】Dify动手实践教程 Task 03
正文详见:Dify动手实践教程-课程详情 | DatawhaleAgent 工作流就是让 “智能助手” 按步骤完成任务的一套 “行动指南”。通俗一点来讲,就是给Agent设计一个流程图,让他根据流程图一步一步地完成相应的工作。在Dify中,我们可以在“创建空白应用”处创建“chatflow”。根据教材内容,你可以很轻松地搭建出一个项目。可以看到每项工作(节点)都可以调用不同的大模型来实现相关功能。同时可以在设置prompt时引用先前的输出。
2025-07-22 23:42:41
609
原创 【笔记】Handy Multi-Agent Tutorial 第三章: CAMEL框架简介及实践(简介部分)
【笔记】Handy Multi-Agent Tutorial 第三章: CAMEL框架简介及实践
2025-07-20 10:14:17
816
原创 【笔记】wow-rag 第3课-初步体验问答引擎
正文详见:wow-rag/notebooks/第3课-初步体验问答引擎.ipynb at main · datawhalechina/wow-rag。
2025-07-19 23:54:32
352
原创 【笔记】Dify动手实践教程 2.入门-聊天助手
文本生成应用的界面大致与聊天助手相似,其功能是根据提示词对用户的输入进行处理。变量是将用户的输入引入到提示词中,让LLM能够根据输入更详细的执行某些操作。知识库用来导入用户想要让模型提前知道的信息,如某些知识手册等。在运行过程中,你也可以通过.csv让应用批量处理用户输出。在左下方你还可以开启一些新功能,进一步提升应用某些功能。比如截图展示的弹幕分析功能,该应用从弹幕中提取关键字。在左上角你可以选择调用的模型,并可以修改其参数。提示词顾名思义,让LLM明白你想要做什么。左侧依次是提示词,变量,知识库。
2025-07-18 11:37:40
220
原创 【笔记】Handy Multi-Agent Tutorial 第二章:Agent 的构成组件
智能体是一个能够感知环境并在环境中自主行动以实现特定目标的系统。关键特征:自主性 - 智能体可以在没有直接人为干预的情况下运作,能够自行决策和行动。响应性 - 能够感知环境并对环境变化做出及时响应。主动性 - 不仅被动响应环境,还可以主动采取行动来实现目标。社交能力 - 能够与其他智能体或人类进行交互和协作。从应用角度,智能体可以分为几类:任务型智能体 - 专注于完成特定任务,如虚拟助手、智能客服等学习型智能体 - 通过与环境交互不断学习和改进,如强化学习智能体。
2025-07-18 11:04:09
868
原创 【笔记】Handy Multi-Agent Tutorial 第一章:基础配置
【笔记】Handy Multi-Agent Tutorial 第一章:基础配置
2025-07-14 20:40:53
268
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人