伴随矩阵的特征值和特征向量

本文探讨了矩阵与其伴随矩阵之间的特征值关系。当0是矩阵A的一个特征值时,0也是伴随矩阵A^*的一个特征值;若k是矩阵A的一个非零特征值,存在非零向量a使得Aa=λa,则A^*的一个特征值为|A|/λ,且特征向量保持不变。

结论:伴随矩阵的特征值为Aλ,特征向量不变 结论: 伴随矩阵的特征值为\frac{A}{ λ },特征向量 不变 λA

如果0是矩阵A的一个特征值,则0也是伴随矩阵A∗的一个特征值;如果k是矩阵A的一个非零特征值,则存在非零向量a:Aa=λa则A∗Aa=λA∗a∣A∣a=λA∗aA∗a=(∣A∣/λ)a∣A∣/λ是A∗的一个特征值。 如果0是矩阵A的一个特征值,则0也是伴随矩阵A^*的一个特征值;\\ 如果k是矩阵A的一个非零特征值,则存在非零向量a: Aa= λa\\ 则 A^*Aa= λA^*a\\ |A|a= λA^*a\\ A^*a=(|A|/ λ)a\\ |A|/ λ 是A^*的一个特征值。\\ 0A0AkAa:Aa=λaAAa=λAaAa=λAaAa=(A/λ)aA/λA

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值