先验(Prior)和 后验(Posterior)

1. 先验与后验的基本概念

1.1 先验概率

  • 定义:先验概率是指在未观测到具体数据(证据)之前,基于已有知识、经验或假设对某个事件或参数的概率分布的估计。简言之,它是你对某件事的“初始信念”。
  • 符号:通常表示为 P(θ)P(\theta)P(θ),其中 θ\thetaθ 是待估计的参数或假设。
  • 特点
    • 先验概率是主观的,依赖于背景知识或假设。
    • 先验可以基于历史数据、专家意见、理论假设或简单猜测。
    • 先验可以是分布形式(如高斯分布、均匀分布)或具体概率值。
  • 示例
    • 掷硬币前,你可能假设硬币是公平的,因此先验概率 P(正面)=0.5P(\text{正面}) = 0.5P(正面)=0.5
    • 在医疗诊断系统中,你可能根据流行病学数据假设某疾病的发病率(先验概率)为 1%。

1.2 后验概率

  • 定义:后验概率是指在观测到新数据(证据)后,根据贝叶斯定理更新后的概率分布。它结合了先验概率和观测数据的似然,反映了你在看到数据后对事件或参数的“更新信念”。
  • 符号:通常表示为 P(θ∣D)P(\theta|D)P(θD),其中 θ\thetaθ 是参数,DDD 是观测数据。
  • 特点
    • 后验概率是条件概率,依赖于观测数据。
    • 后验概率是先验概率的更新结果,体现数据对信念的修正。
    • 后验分布可用于决策、预测或进一步推断。
  • 示例
    • 假设你怀疑某人患有某种疾病(先验概率为 1%)。在检测结果呈阳性(新数据)后,根据检测准确性和贝叶斯定理,你可以计算后验概率,即此人实际患病的概率(可能变为 10% 或更高)。

1.3 先验与后验的关系

  • 先验和后验通过贝叶斯定理联系起来:
    P(θ∣D)=P(D∣θ)⋅P(θ)P(D)P(\theta|D) = \frac{P(D|\theta) \cdot P(\theta)}{P(D)}P(θD)=P(D)P(Dθ)P(θ)
    • P(θ∣D)P(\theta|D)P(θD):后验概率(更新后的信念)。
    • P(D∣θ)P(D|\theta)P(Dθ):似然,表示在给定参数 θ\thetaθ 下观测到数据 DDD 的概率。
    • P(θ)P(\theta)P(θ):先验概率(初始信念)。
    • P(D)P(D)P(D):证据,是数据的边缘概率,通常作为归一化常数。

此公式是贝叶斯推理的核心,说明如何从先验概率(初始假设)结合数据(似然)得到后验概率(更新后的信念)。


2. 贝叶斯定理的推导与理解

为深入理解先验和后验,我们从贝叶斯定理的推导开始。

2.1 条件概率

贝叶斯定理基于条件概率的定义:

  • 条件概率 P(A∣B)P(A|B)P(AB) 表示在事件 BBB 发生时,事件 AAA 发生的概率:
    P(A∣B)=P(A∩B)P(B)P(A|B) = \frac{P(A \cap B)}{P(B)}P(AB)=

### 先验概率与后概率的概念及区别 #### 概念定义 先验概率是指在获取任何观测数据之前,对某个事件发生可能性的估计[^3]。它反映了我们对该事件的初始认知,通常是基于历史经、统计规律或者主观判断得出的概率。 后概率则是通过引入新的证据或数据之后,利用贝叶斯定理重新调整后的概率[^4]。它是结合已有信息新观察到的数据来更新对某事件信念的结果。 #### 数学表达形式 设 $ A $ $ B $ 是两个随机事件,则根据贝叶斯公式可以表示为: $$ P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} $$ 其中: - $ P(A) $ 表示 **先验概率**,即在没有任何关于 $ B $ 的额外信息下,$ A $ 发生的可能性; - $ P(A|B) $ 称作 **后概率**,是在知道 $ B $ 已经发生的情况下,$ A $ 发生的概率; - $ P(B|A) $ 被称为似然度(Likelihood),描述当 $ A $ 成立时 $ B $ 出现的可能性; - $ P(B) $ 则是一个标准化常数,用于确保总概率等于 1。 #### 关键差异分析 两者的根本不同在于它们所依据的信息范围以及时间顺序上的先后关系。具体来说有以下几个方面需要注意: 1. 时间维度: - 先验概率强调的是“事先”,也就是尚未考虑当前实结果或其他相关信息之前的预测值; - 后概率则发生在获得某些实际测量值以后再做进一步修正得到的新估值。 2. 数据依赖性: - 前者独立于具体的样本集之外单独存在; - 后者必然要涉及到针对特定情境下的实测资料来进行量化评估过程中的参数调节工作。 3. 应用场景举例说明如下表所示: | 场景 | 描述 | 使用何种概率 | |------|------------------------------------------------------------------------------------------|--------------| | 医疗诊断 | 如果一个人患有某种疾病的几率是多少? 这里指的是总体人群患病率作为基础设定 | 先验 | | | 当检测呈阳性反应后再问这个人真正得病的机会有多大呢 ? 此刻就需要运用测试准确性等相关因素综合考量 | 后 | ```python # Python实现简单例子展示如何计算两者之间的转换关系 def bayes_theorem(prior_A, likelihood_B_given_A, marginal_B): posterior_A_given_B = (likelihood_B_given_A * prior_A) / marginal_B return posterior_A_given_B prior_probability = 0.01 # Example Prior Probability of having a disease. likelihood_positive_test = 0.99 # Likelihood that test is positive given the person has the disease. marginal_positive_test = 0.0594 # Marginal probability of testing positive. posterior_prob = bayes_theorem(prior_probability, likelihood_positive_test, marginal_positive_test) print(f"The Posterior Probability is approximately {posterior_prob:.4f}") ``` 上述代码片段展示了怎样借助给定数值代入公式完成一次基本运算操作流程演示效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱看烟花的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值