当大模型的认知能力与机器人的物理执行能力相结合,一种全新的智能形态——“具身智能体”正逐步走出实验室。传统机器人被局限在预设场景(如流水线焊接),而大模型赋予它们理解模糊指令、处理突发状况、甚至零样本执行新任务的能力。
本文将系统解析“大模型+机器人”的融合路径,从技术突破、核心框架到落地场景,全方位展现这场正在重塑制造业、服务业、家庭生活的技术革命。
一、机器人行业的“软件困境”:大模型为何是破局关键?
传统机器人的发展长期受限于“硬件强、软件弱”的失衡状态,而大模型的出现恰好填补了软件智能化的短板。
1.1 传统机器人的四大核心痛点
痛点类型 | 具体表现 | 行业数据 |
---|---|---|
智能化缺失 | 仅能执行预编程任务,泛化能力为零 | 工业机器人仅应用于2%的场景,98%依赖人工 |
功能单一 | 一台机器人仅对应一个工种(如码垛、焊接) | 90%的商用机器人无法跨场景复用 |