【PyTorch实战:Torchvision】8、TorchVision实战全攻略:从预训练模型到可视化

在这里插入图片描述

前言:为什么选择TorchVision?

TorchVision是PyTorch生态中最耀眼的“计算机视觉瑞士军刀”,不仅提供80+预训练模型(覆盖分类、检测、分割、视频分析),还集成了数据增强、可视化、高性能IO等工具链。据GitHub统计,超60%的CV项目直接调用其API,节省80%以上开发时间。本文将通过实战案例+架构图解,带你从“调包”到“深度定制”,彻底玩转TorchVision!

一、预训练模型:站在ImageNet的肩膀上

1.1 模型家族全览(附选择指南)

TorchVision的models模块支持4大任务、12类架构,以下是最常用的分类模型对比:

模型家族 特点 适用场景 预训练权重
ResNet系列 残差连接,训练稳定 通用图像分类 IMAGENET1K_V1/2
EfficientNet 复合缩放策略,参数量少精度高 移动端/小数据集 DEFAULT(最新)
Vision Transformer (ViT) 纯注意力机制,大模型优势明显 高分辨率图像 IMAGENET1K_SWAG
MobileNetV3 轻量级,适合移动端 实时应用 IMAGENET1K

💡 最佳实践:小数据集选MobileNetV3,追求精度用EfficientNet,学术研究试ViT。

1.2 加载与微调:3行代码启动迁移学习

# 加载预训练ResNet50(ImageNet权重)  
model = models.resnet50(weights=Models.ResNet50_Weights.DEFAULT)  
model.to(device)  # 部署到GPU  

# 冻结特征层(仅训练分类头)  
for param in model.parameters():  
    param.requires_grad = False  
model.fc = nn.Linear(2048, 10)  # 10分类任务  

# 微调全模型(小学习率)  
for param in model.parameters():  
    param.requires_grad = True  
optimizer = optim.Adam(model.parameters(), lr=1e-5)  

🚀 关键流程图(用Mermaid绘制):

分类
检测/分割
ImageNet预训练模型
任务类型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无心水

您的鼓励就是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值