前言:为什么选择TorchVision?
TorchVision是PyTorch生态中最耀眼的“计算机视觉瑞士军刀”,不仅提供80+预训练模型(覆盖分类、检测、分割、视频分析),还集成了数据增强、可视化、高性能IO等工具链。据GitHub统计,超60%的CV项目直接调用其API,节省80%以上开发时间。本文将通过实战案例+架构图解,带你从“调包”到“深度定制”,彻底玩转TorchVision!
一、预训练模型:站在ImageNet的肩膀上
1.1 模型家族全览(附选择指南)
TorchVision的models
模块支持4大任务、12类架构,以下是最常用的分类模型对比:
模型家族 | 特点 | 适用场景 | 预训练权重 |
---|---|---|---|
ResNet系列 | 残差连接,训练稳定 | 通用图像分类 | IMAGENET1K_V1/2 |
EfficientNet | 复合缩放策略,参数量少精度高 | 移动端/小数据集 | DEFAULT(最新) |
Vision Transformer (ViT) | 纯注意力机制,大模型优势明显 | 高分辨率图像 | IMAGENET1K_SWAG |
MobileNetV3 | 轻量级,适合移动端 | 实时应用 | IMAGENET1K |
💡 最佳实践:小数据集选MobileNetV3,追求精度用EfficientNet,学术研究试ViT。
1.2 加载与微调:3行代码启动迁移学习
# 加载预训练ResNet50(ImageNet权重)
model = models.resnet50(weights=Models.ResNet50_Weights.DEFAULT)
model.to(device) # 部署到GPU
# 冻结特征层(仅训练分类头)
for param in model.parameters():
param.requires_grad = False
model.fc = nn.Linear(2048, 10) # 10分类任务
# 微调全模型(小学习率)
for param in model.parameters():
param.requires_grad = True
optimizer = optim.Adam(model.parameters(), lr=1e-5)
🚀 关键流程图(用Mermaid绘制):