自适应控制
文章目录
00-自适应控制引言(绪论1)
- 参考书目
- Adaptive Control(2-edition),K.J.Astrom
- System Identification-Theory for the User(2-Edition),Lennart Ljung
- 过程辨识,方崇智
01-自适应控制的发展概况(绪论2)
一、什么是自适应控制器
- 自适应控制器定义:1)具有“控制器结构或参数整定机构”的控制器;2)相对于定常参数控制器而言,“结构或者参数”能够在线调整的控制器。
二、为什么要改变“控制器的参数或结构”
- 不改不行:被控对象或者环境发生变化,控制律无法使系统稳定;
- 参数或结构存在不确定性,需要进一步修正控制律以提升控制性能。
三、自适应控制适用的被控对象
- 参数、结构不确定系统(线性、非线性):如 模型参考自适应系统
- 参数未知或随时间“缓慢”变化的被动对象:如 随机自适应系统
- 非线性系统:如 增益调度自适应系统,T-S模糊系统
四、自适应控制的发展概况
五、自适应控制理论的发展动力
六、自适应控制理论的发展方向
七、自适应控制系统的分类
-
自整定调节器(Self-tuning Regulators,STR)
- 多种自适应方案:不同设计方法+不同辨识方法
- 没有基于稳定性的考虑,缺乏“从顶向下”的整体设计方案
-
双重控制(Dual Control)
-
模型参考自适应控制系统(Model-Reference Adaptive System)
-
增益调度系统(Gain Scheduling)
-
无模型自适应控制系统
- 定义:控制器的设计仅利用受控系统的输入输出数据,控制器中不包含受控过程数学模型的任何信息的控制理论与方法。
- 方法:伪梯度向量、迭代无模型控制优化方法(迭代反馈自校正方法)、去伪控制、迭代学习控制和重复控制、强化学习自适应控制
02-系统辨识的基本概念(参数在线估计)
一、什么是系统辨识(参数估计、学习)
- 系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。即按照一定的准则,从某一类模型中找出一个与输入输出数据拟合得最好的模型
-
机理分析建模方法(白箱法)
- 问题:效率低,物理参数需进一步确定,不方便计算机在线决策
-
系统辨识法(黑箱法)
-
输入信号为什么要选M序列?
M序列的自相关性较好,具有伪随机性,容易产生和复制。正余弦函数的信息不够丰富。阶跃信号不易产生。
-
预定的模型结构、阶次如何选定?
-
怎么确定具体参数?
-
如何通过迭代的方法在线估计系统的参数?
-
-
机理分析法+系统辨识法(灰箱法)
二、系统辨识方法的基本分类
{ 参数辨识方法 { a . 经典辨识方法 b.最小二乘类参数辨识方法 c.基于梯度信息的参数辨识方法 d . 极大似然法和预报误差方法 . . . 结构辨识方法 { a.根据Hankel矩阵的秩估计模型的阶次 b . 行列式比 c . 残差的方差 . . . \left\{ \begin{array}{l} 参数辨识方法 \left\{ \begin{array}{l} a.经典辨识方法 \\ \textbf{b.最小二乘类参数辨识方法} \\ \textbf{c.基于梯度信息的参数辨识方法} \\ d.极大似然法和预报误差方法 \\ ... \end{array} \right. \\ 结构辨识方法 \left\{ \begin{array}{l} \textbf{a.根据Hankel矩阵的秩估计模型的阶次} \\ b.行列式比 \\ c.残差的方差 \\ ... \end{array} \right. \end{array} \right. ⎩ ⎨ ⎧参数辨识方法⎩ ⎨ ⎧a.经典辨识方法b.最小二乘类参数辨识方法c.基于梯度信息的参数辨识方法d.极大似然法和预报误差方法...结构辨识方法⎩ ⎨ ⎧a.根据Hankel矩阵的秩估计模型的阶次b.行列式比c.残差的方差...
三、辨识的基本要素
{ 1.输入输出数据(辨识的基础) { 必须包含有关系统特性的足够信息 时域的角度: 信号变化强烈,且呈现非周期性 频域的角度: 频谱宽 2.模型类 3.准则: 评判“辨识得到的模型”是否满足“实际需要”的一个“准则” \left\{ \begin{array}{l} \textbf{1.输入输出数据(辨识的基础)} \left\{ \begin{array}{l} 必须包含有关系统特性的足够信息 \\ \textbf{时域的角度:}信号变化强烈,且呈现非周期性 \\ \textbf{频域的角度:}频谱宽 \\ \end{array} \right. \\ \textbf{2.模型类} \\ \textbf{3.准则:}评判“辨识得到的模型”是否满足“实际需要”的一个“准则” \end{array} \right. ⎩ ⎨ ⎧1.输入输出数据(辨识的基础)⎩ ⎨ ⎧必须包含有关系统特性的足够信息时域的角度:信号变化强烈,且呈现非周期性频域的角度:频谱宽2.模型类3.准则:评判“辨识得到的模型”是否满足“实际需要”的一个“准则”
辨识就是按照一定的准则从某一类模型中找出一个与输入输出数据拟合得最好的模型。
四、模型简介(Book.1 Page.81)
-
ARX模型
-
有源自回归模型
-
分量形式
y ( k ) + a 1 y ( k − 1 ) + ⋯ + a n a y ( k − n a ) = b 1 u ( k − 1 ) + ⋯ + b n b u ( k − n b ) + e ( k ) e ( k ) 为白噪声 y(k) +a_1y(k-1) +\cdots +a_{na}y(k-na) =b_1u(k-1) +\cdots +b_{nb}u(k-nb)+e(k) \\ e(k)为白噪声 y(k)+a1y(k−1)+⋯+anay(k−na)=b1u(k−1)+⋯+bnbu(k−nb)+e(k)e(k)为白噪声 -
矩阵形式
A ( z ) y ( k ) = B ( z ) u ( k ) + e ( k ) A ( z ) = 1 + a 1 z − 1 + . . . + a n a z − n a B ( z ) = b 1 z − 1 + . . . + b n b z − n b A(z)y(k)=B(z)u(k)+e(k) \\ A(z)=1+a_1z^{-1}+...+a_{na}z^{-na}\\ B(z)=b_1z^{-1}+...+b_{nb}z^{-nb} A(z)y(k)=B(z)u(k)+e(k)A(z)=1+a1z−1+...+anaz−naB(z)=b1z−1+...+bnbz−nb -
Figure
-
-
ARMAX模型
-
MA:滑动平均
-
矩阵形式
A ( z ) y ( k ) = B ( z ) u ( k ) + C ( z ) e ( k ) C ( z ) = 1 + c 1 z − 1 + . . . + c n c z − n c A(z)y(k)=B(z)u(k)+C(z)e(k) \\ C(z)=1+c_1z^{-1}+...+c_{nc}z^{-nc} A(z)y(k)=B(z)u(k)+C(z)e(k)C(z)=1+c1z−1+...+cncz−nc -
Figure
-
-
ARARX模型
-
矩阵形式
A ( z ) y ( k ) = B ( z ) u ( k ) + 1 D ( z ) e ( k ) D ( z ) = 1 + d 1 z − 1 + . . . + d n d z − n d A(z)y(k)=B(z)u(k)+\frac{1}{D(z)}e(k) \\ D(z)=1+d_1z^{-1}+...+d_{nd}z^{-nd} A(z)y(k)=B(z)u(k)+D(z)1e(k)D(z)=1+d1z−1+...+dndz−nd -
Figure
-
-
ARARMAX模型
- 矩阵形式
A ( z ) y ( k ) = B ( z ) u ( k ) + C ( z ) D ( z ) e ( k ) A(z)y(k)=B(z)u(k)+\frac{C(z)}{D(z)}e(k) A(z)y(k)=B(z)u(k)+D(z)C(z)e(k)
- 矩阵形式
-
Output Error Model Structure(OE model structure)
-
Box-Jenkins Model Structure
-
A General Family of Model Structures
-
神经网络模型(Artificial Neural Networks)
-
基于规则的模型(Rule based Model)
-
基于模糊推理系统的自适应网络(Adaptive-Network based Fuzzy Inference System,ANFIS)
03-最小二乘参数辨识标准算法(最小二乘类1)
一、引例
- 总结:
- 以“测量值与估计值残差的平方和最小”指标,在“线性函数”这一类函数中找到最优解;
- 如果函数类扩大到“非线性”方程,有可能找到一个使“偏差的平方和”更小的方程;
- 多元函数优化问题
二、基本定义和基本计算公式
-
最小二乘模型类和标准格式(ARX模型)
-
分量形式:
y ( k ) + a 1 y ( k − 1 ) + . . . + a n y ( k − n ) = b 1 u ( k − 1 ) + . . . + b n u ( k − n ) + e ( k ) y(k)+a_1y(k-1)+...+a_ny(k-n)=b_1u(k-1)+...+b_nu(k-n)+e(k) y(k)+a1y(k−1)+...+any(k−n)=b1u(k−1)+...+bnu(k−n)+e(k) -
向量形式:
y ( k ) = [ − y ( k − 1 ) ⋯ − y ( k − n ) u ( k − 1 ) ⋯ u ( k − n ) ] [ a 1 ⋮ a n b 1 ⋮ b n ] y(k)=\left[ \begin{matrix} -y(k-1) & \cdots & -y(k-n) & u(k-1) & \cdots & u(k-n) \end{matrix}\right] \left[ \begin{matrix} a_1 \\ \vdots \\ a_n \\ b_1 \\ \vdots \\ b_n \end{matrix} \right] y(k)=[−y(k−1)⋯−y(k−n)u(k−1)⋯u(k−n)] a1⋮anb1⋮bn
-
-
最小二乘准则(最小二乘估计原理)和正规方程组
-
准则: J = ∑ i = 1 N [ y ( n + i ) − y ^ ( n + i ) ] 2 J=\sum^{N}_{i=1}[y(n+i)-\widehat{y}(n+i)]^2 J=i=1∑N[y(n+i)−y (n+i)]2
-
正规方程组: Φ T ( N ) Y ( N ) − Φ T ( N ) Φ ( N ) θ ( N ) = 0 \Phi^T(N)Y(N)-\Phi^T(N)\Phi(N)\theta(N)=0 ΦT(N)Y(N)−ΦT(N)Φ(N)θ(N)=0
其中:
Φ ( N ) = [ − y ( n ) − y ( n − 1 ) ⋯ − y ( 1 ) u ( n ) u ( n − 1 ) ⋯ u ( 1 ) − y ( n + 1 ) − y ( n ) ⋯ − y ( 2 ) u ( n + 1 ) u ( n ) ⋯ u ( 2 ) ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ − y ( n + N − 1 ) − y ( n + N − 2 ) ⋯ − y ( N ) u ( n + N − 1 ) u ( n + N − 2 ) ⋯ u ( N ) ] θ ( N ) = [ a n ⋯ a 1 u n ⋯ u 1 ] T Y ( N ) = [ y ( n + 1 ) ⋯ y ( n + N ) ] T \Phi(N)= \left[ \begin{matrix} -y(n) & -y(n-1) & \cdots & -y(1) & u(n) & u(n-1) & \cdots & u(1) \\ -y(n+1) & -y(n) & \cdots & -y(2) & u(n+1) & u(n) & \cdots & u(2) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots\\ -y(n+N-1) & -y(n+N-2) & \cdots & -y(N) & u(n+N-1) & u(n+N-2) & \cdots & u(N) \end{matrix} \right] \\ \theta(N) = \left[\begin{matrix}a_n & \cdots & a_1 & u_n & \cdots & u_1 \end{matrix}\right]^T \\ Y(N) = \left[ \begin{matrix} y(n+1) & \cdots & y(n+N) \end{matrix} \right]^T Φ(N)= −y(n)−y(n+1)⋮−y(n+N−1)−y(n−1)−y(n)⋮−y(n+N−2)⋯⋯⋱⋯−y(1)−y(2)⋮−y(N)u(n)u(n+1)⋮u(n+N−1)u(n−1)u(n)⋮u(n+N−2)⋯⋯⋱⋯u(1)u(2)⋮u(N) θ(N)=[an⋯a1un⋯u1]TY(N)=[y(n+1)⋯y(n+N)]T
-
-
参数解的表达式:
θ ^ ( N ) = [ Φ T ( N ) Φ ( N ) ] − 1 Φ T ( N ) Y ( N ) \widehat{\theta}(N)=[\Phi^T(N)\Phi(N)]^{-1}\Phi^T(N)Y(N) θ (N)=[ΦT(N)Φ(N)]−1ΦT(N)Y(N)
-
[ Φ T ( N ) Φ ( N ) ] 2 n × 2 n [\Phi^T(N)\Phi(N)]_{2n \times 2n} [ΦT(N)Φ(N)]2n×2n 的非奇异性
- 从矩阵理论上讲,非奇异要求 Φ ( N ) \Phi(N) Φ(N) 的行数 N ≥ 2 n N \geq 2n N≥2n;从物理背景上看, N > 2 n N > 2n N>2n;
- 当 $N > 2n $ 时, [ Φ T ( N ) Φ ( N ) ] [\Phi^T(N)\Phi(N)] [ΦT(N)Φ(N)] 不一定非奇异。
-
开环可辨识性条件
-
充分必要条件:输入信号必须是 2 n 2n 2n 阶持续激励信号,即要求:
U ‾ L T U ‾ L > 0 { U ‾ L = [ F u L , F 2 u L , … , F 2 n u L ] u L = [ u ( 1 ) , u ( 2 ) , … , u ( L ) ] T F = [ 0 O 1 ⋱ O 1 0 ] n = m a x ( n a , n b ) \overline{U}_L^T\overline{U}_L > 0 \\ \left\{ \begin{array}{l} \overline{U}_L = [Fu_L,F^2u_L,\ldots,F^{2n}u_L] \\ u_L = [u(1),u(2),\ldots,u(L)]^T \\ F = \left[\begin{matrix} 0 & & \rm{O} \\ 1 & \ddots & \\ \rm{O} & 1 & 0 \end{matrix}\right] \\ n = \mathbf{max}(n_a,n_b) \end{array} \right. ULTUL>0⎩ ⎨ ⎧UL=[FuL,F2uL,…,F2nuL]uL=[u(1),u(2),…,u(L)]TF= 01O⋱1O0 n=
-