1. 概述 特征归一化是将所有特征都统一到一个大致相同的数值区间内,通常为[0,1]。主要是用来解决数据的量纲不同的问题。 2. 常用的特征归一化方法 1)Min-Max Scaling(归一化/区间缩放法) 对原始数据进行线性变换,使结果映射到[0,1]的范围,实现对数据的等比例缩放。 代码如下: from sklearn.preprocessing import MinMaxScaler x1 = MinMaxScaler().fit_transform(x) <