【AI面试题】特征归一化

1. 概述

特征归一化是将所有特征都统一到一个大致相同的数值区间内,通常为[0,1]。主要是用来解决数据的量纲不同的问题。

2. 常用的特征归一化方法

1)Min-Max Scaling(归一化/区间缩放法)
在这里插入图片描述
       对原始数据进行线性变换,使结果映射到[0,1]的范围,实现对数据的等比例缩放。

代码如下:

from sklearn.preprocessing import MinMaxScaler
x1 = MinMaxScaler().fit_transform(x)
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值