【人脸识别/轻量级模型】VarGFaceNet:适用于人脸识别的轻量级网络模型(文末附代码)

VarGFaceNet是一种针对轻量级人脸识别优化的网络结构,它基于VarGNet改进,增加了可变组卷积和嵌入块,提升了对大规模人脸识别任务的判别能力。通过知识蒸馏和递归知识提炼,提高了模型的泛化能力和效率。实验表明,这种方法在限制计算成本的同时,能保持良好的识别性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目:《VarGFaceNet: An Efficient Variable Group Convolutional Neural Network for Lightweight Face Recognition》
论文地址:https://arxiv.org/pdf/1910.04985v4.pdf

1.前言

       许多工作提出了用于常见计算机视觉任务的轻型网络,例如SqueezeNet,MobileNet ,MobileNetV2,ShuffleNet,SqueezeNet。它们大量的使用1×1卷积,与AlexNet 相比,可减少50倍的参数,同时在ImageNet上保持AlexNet级别的准确性。MobileNet 利用深度可分离卷积来实现计算时间和准确性之间的权衡。基于这项工作,MobileNetV2 提出了一种倒置的bottleneck结构,以增强网络的判别能力。ShuffleNet 和ShuffleNetV2 使用逐点组卷积和通道随机操作进一步降低了计算成本。即使它们在推理过程中花费很少的计算并在各种应用程序上有良好的性能,但嵌入式系统上的优化问题仍然存在于嵌入式硬件和相应的编译器上。为了解决这个冲突,VarGNet 提出了一个可变组卷积,可以有效地解决块内部计算强度的不平衡。同时,作者探索了在相同卷积核大小的情况下,可变组卷积比深度卷积具有更大的学习能力,这有助于网络提取更多的信息。但是,VarGNet是针对常用任务设计的,例如图像分类和目标检测。它将头部的空域减

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值