Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in-place.
Example 1:
Input: [ [1,1,1], [1,0,1], [1,1,1] ] Output: [ [1,0,1], [0,0,0], [1,0,1] ]
Example 2:
Input: [ [0,1,2,0], [3,4,5,2], [1,3,1,5] ] Output: [ [0,0,0,0], [0,4,5,0], [0,3,1,0] ]
主要考察O(1) 空间复杂度的原地算法。
先上我自己琢磨的代码
class Solution {
public:
void setZeroes(vector<vector<int>>& matrix) {
int u = matrix.size(), v = matrix[0].size();
bool fg = 0;
for (int i = 0; i < u; i++)
{
fg = 0;
for (int j = 0; j < v; j++)
{
if (matrix[i][j] != 0)
{
fg = 1;
}
}
if (fg == 0)
{
for (int i = 0; i < u; i++)
{
for (int j = 0; j < v; j++)
{
matrix[i][j] = 0;
}
}
return;
}
}
for (int i = 0; i < u; i++)
{
for (int j = 0; j < v; j++)
{
if (matrix[i][j] == 0)
{
for (int k = 0; k < v; k++)
{
if (matrix[i][k] == 0)
matrix[i][k] = -1;
else
matrix[i][k] = 0;
}
break;
}
}
}
for (int i = 0; i < u; i++)
{
for (int j = 0; j < v; j++)
{
if (matrix[i][j] == 0)
{
for (int k = 0; k < v; k++)
{
if (matrix[i][k] == -1)
{
for (int n = 0; n < u; n++)
{
matrix[n][k] = 0;
}
}
}
break;
}
}
}
}
};
自己写的就是麻烦一些,runtime是54ms,空间复杂度为O(1),需要遍历3次矩阵。
第一次遍历遍历看有没有一行全0的存在,如果有把矩阵更新为全0 return
第二次遍历,如果这一行存在0的话,就把这一行为0的地方置为-1,其余置为0
第三次遍历,如果这一行存在0的话,就把这一行为-1的地方置为0,且为-1的一列也置为0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
然后我们看看人家简洁明了的代码
class Solution {
public:
void setZeroes(vector<vector<int> > &matrix) {
int col0 = 1, rows = matrix.size(), cols = matrix[0].size();
for (int i = 0; i < rows; i++) {
if (matrix[i][0] == 0) col0 = 0;
for (int j = 1; j < cols; j++)
if (matrix[i][j] == 0)
matrix[i][0] = matrix[0][j] = 0;
}
for (int i = rows - 1; i >= 0; i--) {
for (int j = cols - 1; j >= 1; j--)
if (matrix[i][0] == 0 || matrix[0][j] == 0)
matrix[i][j] = 0;
if (col0 == 0) matrix[i][0] = 0;
}
}
};
只需遍历两遍矩阵。
第一次遍历,从上到下,如果[i][j]是0,就把第一行中的[j]置为0,第一列中的[i]置为0,相当于这一行这一列为0是通过列首和行首进行存储的。
第二次遍历,从下到上,如果这一列 [j] 或者这一行 [i] 的首为0,那么[i][j] 置为0.
(不过我跑这个简洁代码居然跑了55ms,这更加说明leetcode的rumtime不准......)