贝叶斯网络、概率图模型、全局语义、因果链、朴素贝叶斯模型、枚举推理、变量消元

本文介绍了贝叶斯学派与频率学派的区别,重点探讨了概率图模型,包括贝叶斯网络和无向图模型在机器学习中的作用。通过实例展示了贝叶斯网络如何表示变量间的依赖关系,以及如何进行推理和决策。此外,文章还讨论了因果链、共同原因和共同效应等概念,以及如何构建和推理贝叶斯网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

频率学派 vs. 贝叶斯学派

频率学派:

  • 概率是事件发生的长期预期频率。
  • P(A) = n/N,其中n是事件A在N次机会中发生的次数。
  • "某事发生的概率是0.1"意味着0.1是在无穷多样本的极限条件下能够被观察到的比例。
  • 在许多情况下,不可能进行重复实验。
  • 例如问题:第三次世界大战发生的概率是多少?

贝叶斯学派

  • 概率是信念的度量。
  • 它是一种基于不完全知识给出事件可能性的度量。
  • 贝叶斯分析从先验信念开始,根据新的数据更新这种信念。
  • 贝叶斯概率的主观性可能是一个限制,因为不同的人可能有不同的先验信念,并且可能根据相同的数据以不同的方式更新他们的信念。

Probability(概率):

  • Probability(概率)是对不确定知识一种严密的形式化方法。
  • 它提供了一种量化不同事件或结果的可能性的方式。
  • 全联合概率分布指定了对随机变量的每种完全赋值,即每个原子事件的概率。
  • 可以通过把对应于查询命题的原子事件的条目相加的方式来回答查询。
  • 对于复杂的领域,联合分布可能会变得过于复杂,我们必须找到一种方法来减少它的大小。
  • 独立性和条件独立性提供了分解联合分布和简化计算的工具。</
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.whl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值