jieba自定义词库分词并进行tfidf计算

1、导入库

import jieba
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

2、将df_all_info的’JOB_TITLE’字段的内容都作为自定义词库,命名为job_title.txt

with open('D:\\proj\\sodic_2021\\job_title.txt','w',encoding='utf-8') as f:
    for i in range(len(df_all_info)):
        job_title=df_all_info.loc[i,'JOB_TITLE']
        f.write('\n%s' %(job_title))

3、将df_all_info中每个样本的’SPECILTY’字段进行分词,保存在’SPECILTY_JIEBA’字段中

df_all_info['SPECILTY_JIEBA']=0
jieba.load_userdict('D:\\proj\\sodic_2021\\job_title.txt')

for i in range(len(df_all_info)):
    if df_all_info.loc[i,'SPECILTY'] is np.NAN:
        continue
    else:
        word=jieba.cut(df_all_info.loc[i,'SPECILTY'])
        word_cut=''
        for j in word:
            word_cut=word_cut+' '+j.up
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值