堆排序(C++实现)

参考:

  1. 面试官:请写一个堆排序_哔哩哔哩_bilibili
  2. C++实现排序算法_c++从小到大排序-CSDN博客

堆的基本概念

  1. 堆排实际上是利用堆的性质来进行排序。堆可以看做一颗完全二叉树

  2. 堆分为两类:

    1. 最大堆(大顶堆):除根节点外,堆的每个父节点都大于其孩子节点。
    2. 最小堆(小顶堆):除根节点外,堆的每个父节点都小于其孩子节点。
    3. 最大堆和最小堆示意图:在这里插入图片描述
  3. 数据结构包含逻辑结构和存储结构,对于堆来说:

    1. 堆的逻辑结构是完全二叉树
    2. 堆的存储结构可以是链式存储,也可以是顺序存储。在堆排序中我们基于的存储结构是顺序存储
    3. 顺序存储示意图:(以最大堆为例)在这里插入图片描述

堆排序

  1. 堆排序主要分为三个步骤:
    1. 建堆
    2. 交换数据
    3. 重复步骤1,2
  2. 建堆。首先说说建堆,因为我们要对数组进行排序,这个数组里元素原本的排列是无规则的,为了能通过堆对数组进行排序,我们需要进行“建堆”操作,从而使得数组的排序符合堆的要求。根据上文可知,堆可以分为两种,一种是最大堆,另一种是最小堆。既然有两种堆,我们应该基于哪种类别来建堆呢?这就要取决于我们的排序形式了,如果是升序(从小到大),则需要建最大堆;如果是降序(从大到小),则需要建最小堆。以下都以升序(建最大堆为例)。
  3. 交换数据。交换什么数据呢?这里直接给出结论,是交换堆(数组)索引为0的元素和末尾元素(堆的最后一个元素)。因为我们已经建好堆了,且我们堆的存储结构是顺序结构,即根节点(只最大的节点)存储在数组的第一位(索引为0),这是我们将这个数与数组最后一个数交换位置,就完成了数组中最大元素的排序(因为最大的元素肯定在数组最后一个位置)。
  4. 交换完数据后,对于新的堆(新的二叉树)来说,是不满足最大堆的条件的(因为发生了位置交换),这时就需要重新建堆,重新建堆有别于初次建堆,因为我们已经固定了最大元素的位置,所以之后建堆不应该让这个最大的元素参与进来。
  5. 参考代码如下:
    最大堆建堆
/**
 * 堆化
 * 大根堆(大顶堆/最大堆),小的数往下沉
 */
void maxHeapify(vector<int> &nums, int pos, int len)
{
   
   
	// (pos << 1) + 1就是2*pos+1,对应该节点的左子节点
	// (pos << 1) + 2就是2*pos+2,对应该节点的右子节点
    int child = (pos << 1) + 1;
    while (child < len)
    {
   
   
        if (child + 1 < len && nums[child + 1] > nums[child])
        {
   
   
            child = child + 1;
        }
        if (nums[pos] > nums[child])
        {
   
   
            return;
        }
        else
        {
   
   
            swap(nums[pos], nums[child]);
            pos = child;
            child = 
<think>我们被要求提供C++堆排序算法实现代码示例。根据引用[3]和引用[4],堆排序主要分为两个步骤:建堆和调整堆。堆排序利用堆这种数据结构,通过将待排序序列构建成一个大顶堆(或小顶堆),然后将堆顶元素与末尾元素交换,再重新调整堆结构,反复执行此操作直到整个序列有序。堆排序的步骤:1.构建初始堆:将无序序列构建成一个堆,这里以大顶堆为例(升序排列使用大顶堆)。2.交换堆顶元素和末尾元素:将堆顶元素(最大值)与末尾元素交换,此时末尾元素为最大值,固定该元素(不再参与后续调整)。3.调整堆:将剩余元素重新调整成堆,然后继续交换堆顶元素和当前末尾元素,直到整个序列有序。在C++实现堆排序,通常需要两个函数:-一个用于调整堆(HeapAdjust或称为heapify),其功能是调整某个节点,使其满足堆的性质。-另一个是堆排序的主函数(HeapSort),它首先构建初始堆,然后不断交换和调整。根据引用[3]中的代码示例,我们稍作调整和注释,提供一份清晰且可运行的堆排序代码。注意:引用[4]提到堆的定义,即对于大顶堆,每个节点的值都大于或等于其左右子节点的值。下面我们将用C++实现堆排序(升序排列,使用大顶堆):</think>### C++堆排序算法实现 堆排序是一种基于**二叉堆数据结构**的高效排序算法,其时间复杂度为$O(n\log n)$,空间复杂度为$O(1)$。以下是完整的C++实现代码示例: ```cpp #include <iostream> using namespace std; // 调整堆(大顶堆) void heapify(int arr[], int n, int i) { int largest = i; // 初始化最大元素为根节点 int left = 2 * i + 1; // 左子节点索引 int right = 2 * i + 2; // 右子节点索引 // 如果左子节点大于根节点 if (left < n && arr[left] > arr[largest]) largest = left; // 如果右子节点大于当前最大值 if (right < n && arr[right] > arr[largest]) largest = right; // 如果最大值不是根节点 if (largest != i) { swap(arr[i], arr[largest]); // 交换位置 heapify(arr, n, largest); // 递归调整子树 } } // 堆排序主函数 void heapSort(int arr[], int n) { // 构建初始堆(从最后一个非叶子节点开始) for (int i = n / 2 - 1; i >= 0; i--) heapify(arr, n, i); // 逐个提取堆顶元素 for (int i = n - 1; i > 0; i--) { swap(arr[0], arr[i]); // 将当前最大值移到数组末尾 heapify(arr, i, 0); // 调整剩余元素组成的堆 } } // 打印数组 void printArray(int arr[], int n) { for (int i = 0; i < n; ++i) cout << arr[i] << " "; cout << "\n"; } // 测试代码 int main() { int arr[] = {12, 11, 13, 5, 6, 7}; int n = sizeof(arr) / sizeof(arr[0]); cout << "原始数组: \n"; printArray(arr, n); heapSort(arr, n); cout << "排序后数组: \n"; printArray(arr, n); } ``` #### 算法核心步骤: 1. **建堆**:从最后一个非叶子节点(索引$n/2-1$)开始自底向上构建大顶堆 2. **排序**: - 交换堆顶元素(最大值)与当前末尾元素 - 堆大小减1,重新调整堆结构 - 重复直到堆大小为1 #### 时间复杂度分析: - 建堆操作:$O(n)$ - 每次堆调整:$O(\log n)$ - 总时间复杂度:$O(n\log n)$ 堆排序特别适合**大规模数据排序**,且具有**原地排序**(不需要额外空间)的优点[^1][^2][^3]。 --- ### 相关问题 1. 堆排序与快速排序在时间复杂度上有何异同? 2. 如何修改代码实现降序排列的堆排序? 3. 堆排序在实际系统中有哪些典型应用场景? 4. 为什么建堆操作的时间复杂度是$O(n)$而非$O(n\log n)$? 5. 堆排序在什么情况下性能会优于归并排序? [^1]: 15种常见的 C/C++ 排序算法及完整代码 [^2]: 算法入门一>:C++各种排序算法详解及示例源码 [^3]: 数据结构:常见的排序算法():堆排序(C++实现)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值