探讨AI 在企业中落地困难的几个原因

不可否认 AI 在年初彻底火了一把,但笔者认为火的只是概念,激发了大家对 AI 概念认知的好奇心。于是各种培训搞起来,培训之后呢?大部分企业就没有然后了。

AI 的火也只是表现层,好比网上的一段子:AI 目前最大的功能是想啥有啥, 但就是不能指望它干啥。

AI 技术看起来很神奇,但真正应用到实际工作中后才发现 AI 的局限性远远大于预期,高昂的投入成本、技术实现的复杂性以及漫长的回报周期让不少公司望而却步,导致 AI 在企业应用市场外热内冷。

AI 为什么在企业中落地困难呢?笔者分析大约有以下四个原因:不懂,算法、算力、数据

1.不懂:对 AI 认知不够

2.算力:担心投入资源不一定有回报

3.算法:通用大模型能力强,但是不专业

4.数据:缺少数据,有数据但质量不高

对 AI 认知不够

对 AI 的理解不足,主要体现在企业需求模糊和专业人才缺少。

需求模糊

不同企业的业务场景和需求差异大,通用AI技术难以直接适配,结果AI找不到精准发力点,陷入碎片化需求。

部分企业对AI认识不足,缺乏清晰的AI战略规划,没有将AI与企业业务战略相结合,导致AI应用缺乏明确方向和目标。

造成“锤子找不着钉子”的情景,业务部门需求模糊(如“提升销量”),

人才短缺

AI落地需同时懂算法、业务、工程的跨界人才,这样复合型人才匮乏,制约了AI项目的推进。也存在基层员工视AI为岗位威胁,消极配合的情况。

算力:担心投入资源不一定有回报

现实情况是大部分传统企业生存艰难,面对高额的算力成本难以支撑,而且AI价值难以量化,比如“客户满意度提升”,提升多少,如何验收都是问题。

另外除模型开发外,数据治理、算力扩容、系统改造、持续运维成本常超预算数倍。

算法:通用大模型能力强,但是不专业

通用大模型存在答非所问情况,比如我要一把可以自由滑动的五星脚皮椅设计图,AI 给我的图片是两个五角星的下脚

这个主要原因就是通用大模型不认识“五星脚”,关于算法下一篇专门讲讲通用大模型和微调后定制行业模型的区别。

数据:缺少数据,有数据但质量不高

众所周知 AI 技术想发挥作用,外需依托强大的数据基础。

而目前企业数字化基础薄弱,尤其缺乏清洁、结构化的数据,数据孤岛现象严重,流程混乱,管理不规范

就算 AI 有效嵌入现有体系,也是垃圾数据进,无效答案出。

所以 AI依赖大量高质量数据进行训练,依托企业管理的标准化、数据的完整性、流程的规范化。

同时,数据安全至关重要,一旦泄露会给企业带来巨大损失,这使得企业在使用和共享数据时顾虑重重。

AI落地本质是技术与业务的交响曲成功企业往往在数据基建上耐心耕耘,训练行业特有模型、寻找具体业务场景运用 AI。

当技术理想主义让位于商业务实主义,AI才能从“实验室宠儿”蜕变为“生产力引擎”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值