字节跳动开源Seed-OSS-36B:512K上下文,代理与长上下文基准新SOTA

昨晚,字节跳动Seed团队正式宣布开源Seed-OSS系列大语言模型,此次开源的Seed-OSS系列包括三个版本

-Seed-OSS-36B-Base:含合成数据

-Seed-OSS-36B-Base:不含合成数据

-Seed-OSS-36B-Instruct:指令微调版

图片

所有模型均采用Apache-2.0许可证发布,为研究人员和开发者提供了极大的使用、修改和再分发自由度。

Seed-OSS-36B模型拥有360亿参数,仅使用12万亿token进行训练,却在多个主流开源基准测试中表现出色。模型支持原生512K上下文长度,这是 OpenAI 最新GPT-5模型系列的两倍,意味着用户可以一次性处理大量信息,如长达1600页的文档。

模型采用了流行的因果语言模型架构,结合了RoPE位置编码、分组查询注意力(GQA)机制、RMSNormSwiGLU激活函数。其具体架构参数包括64层网络、80/8/8QKV头配置、128的头维度、5120的隐藏层大小和155K的词汇表大小。

可控思维预算

Seed-OSS-36B引入了一项创新特性——可控思维预算(Controllable Thinking Budget)。这意味着用户根据任务复杂性灵活指定模型的推理长度,动态控制推理过程,显著提高了推理效率。

在实际使用中,用户可以设置5121K2K4K8K 或 16K的思维预算。模型在推理过程中会定期触发自我反思,估计已消耗和剩余的预算,让用户始终掌控资源使用情况。对于简单任务,模型可以使用较短的思维链快速响应;对于复杂任务,则可以分配更多预算进行深度思考。

性能表现

根据发布的基准测试结果,Seed-OSS-36B在多个领域都达到了开源模型的先进水平。

Base版模型在MMLU-Pro上取得65.1分,在MMLU上取得84.9分,在GSM8K上取得90.8分,在MATH上取得81.7分,在HumanEval上取得76.8分,在BBH上取得87.7分,在MBPP上取得80.6分。

图片

Instruct版本表现更为突出:在AIME24数学基准上达到91.7%,在AIME25上达到84.7%,在LiveCodeBench v6编码基准上达到67.4%,在TAU1-Retail代理任务上达到70.4%,在SWE-Bench Verified上达到56.0%,在RULER128K)长上下文测试中达到94.6

图片

可以看出,Seed-OSS-36B在数学推理、编程能力、代理任务和长上下文处理方面都表现出色,特别是在代理任务和长上下文处理上该模型创造了开源模型的新纪录。

模型支持通过Hugging Face TransformersvLLM进行推理,并提供了4-bit8-bit量化版本。推荐的生成参数为temperature=1.1top_p=0.95,在这一配置下,模型在多数任务上都能取得最佳性能。

由于36B参数规模较大,即使用Q4量化,也需要大约20GB以上的VRAM。建议使用支持部分卸载的推理框架。

模型已经通过Hugging Face发布,开发者可以立即开始使用和探索这一强大的开源模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值