docker部署tf-serving

本文介绍了在环境配置遇到问题后,如何使用Docker部署TensorFlow Serving。详细阐述了Docker基本操作,包括容器的启动、终止以及命名规则。同时,讲解了如何启动TensorFlow Serving模型,并设置模型名称和端口。还提到了日志管理,包括日志位置、磁盘空间问题以及UTC时间与本地时间的差异。最后,验证了接口请求和返回结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从头开始的原因是环境变了,我这里死活装不了tf-model-server,试了从Git clone,然后build,但就是失败,有了sudo权限后,按照此博文的操作仍旧不行,窝草,能咋办,只有docker了。

参考官方文档

For Recommendation in Deep learning QQ Group 277356808

For deep learning QQ Second Group 629530787

I'm here waiting for you

1-docker基本操作

依次执行如下操作,可以是可以,但是怎么终止(kill)呢?懵逼了

docker pull tensor
回答: 要使用tensorflow/serving docker部署,你可以按照以下步骤进行操作。首先,确保你已经安装好docker并打开了docker桌面。然后,进入命令台并输入powershell进入powershell环境。接下来,使用以下命令拉取tensorflow/serving镜像: docker pull tensorflow/serving。确认docker正常使用后,输入以下命令来搭建服务器: docker run -t -p 8501:8501 -p 8500:8500 -v C:/Users/65410/Desktop/imbd_bert:/models/imbd_bert -e MODEL_NAME=imbd_bert tensorflow/serving。这样就可以使用tensorflow/serving docker部署了。\[2\]\[3\] #### 引用[.reference_title] - *1* [深度学习模型部署docker+TensorFlow Serving](https://blog.csdn.net/qq_39056596/article/details/116271044)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [win10利用tensorflow serving(docker安装)部署Bert文本分类模型(tf keras)](https://blog.csdn.net/wang_rui_j_ie/article/details/122680368)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李飞刀李寻欢

您的欣赏将是我奋斗路上的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值