fastTEXT论文解读并附实例代码

本文深入解读fastTEXT论文,探讨如何通过压缩技术减少存储空间,特别是在PQ基础上存储词向量。fastTEXT利用n-gram特征、降维和更快的softmax分类器,实现小型文本分类模型(通常小于100kB),同时保持高准确性和速度。文章介绍了PQ压缩方法、线性分类器的优势、特征剪枝和哈夫曼树等概念,并提供了一个基于dbpedia数据的压缩实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇博文是入门使用级别,但对于面试来说则不够,毕竟领导一问三不知必定over,其基本原理还是要搞清楚,因而有此博文。paper在此

0,绪论

考虑紧致特征以减少存储空间,提出在PQ( product quantization,也是笛卡尔乘积)基础之上存储词向量。文本分类可用于垃圾过滤。fastTEXT基于n-gram特征,降维,以及更快的softmax分类器,一些关键部分,特征剪枝,量化,hash,再训练使得文本分类模型很小(一般小于100kB)而并没有明显的牺牲acc和速度。由于不受纯二进制代码的约束,采用了更传统的编码方式,即采用矢量的幅度/方向参数化。因此,只需要编码/压缩一个酉d维向量,这很好地符合上述LSH和PQ方法。

1,方法

在文本分类中,线性分类器依旧是有竞争力的,而且训练更快。在线性文本分类中最有效的trick是使用一个低等级的约束减少计算负担,同时在不同类别之间共享信息。这在更大输出空间中更有效,尤其是一些类别训练样本较少时。本文中,一个类似的模型,取N个document的so

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李飞刀李寻欢

您的欣赏将是我奋斗路上的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值