NLP基本业务范围

本文探讨了NLP在文本纠错、掩蔽词语言模型、实体词识别、情感分析和文本摘要等领域的应用。重点指出,尽管有现成的库如huggingface,但关键在于模型的调整和微调。对于实体识别,主要关注位置、组织、人名和杂类四种类型。情感分析简化为词的正负标记,而文本摘要则是NLP中的一个重要任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,文本纠错(query纠错),可用于爬取的新闻资讯等进行预处理,去掉错别字、可用于搜索业务中query词纠错、可用于对话中的智能改错。中文相关的纠错paper

两个指标:过纠率(FAR,也就误报率),召回率

过纠率:正确的句子被改错的比率(FAR=正确句子被错纠的个数/正确句子个数);召回率:错误的句子被全部纠正的比率。较大的过纠率将会对系统和用户体验带来负面效果。因而,纠对句子数量远远大于被改错句子的数量,如果句子出错概率是K,则K*RECALL>>(1-K)*FAR。

github1,并不是说有了huggingface就可以拿来用,关键是在此基础上进行修改和设计模型,fine-tune,这才是水平和能力。

2,掩蔽词masked language model

from transformers import pipeline
unmasker = pipeline('fill-mask', model=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李飞刀李寻欢

您的欣赏将是我奋斗路上的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值