java---一维差分算法(每日一道算法2022.7.24)

该博客介绍了如何使用一维差分法处理序列,在给定整数序列上执行多个区间加减操作,并最终还原序列的过程。核心思想是通过前缀和与差分数组实现高效计算,代码中展示了具体的实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目
输入一个长度为 n 的整数序列。
接下来输入 m 个操作,每个操作包含三个整数 l,r,c表示将序列中 [l,r] 之间的每个数加上c。
请你输出进行完所有操作后的序列。

输入
两个初始值,分别为元素个数,以及进行计算的次数
6 3

数组
1 2 2 1 2 1

计算,每次三个数据,分别为起始,终点,以及加减的数
1 3 1
3 5 1
1 6 1
输出
3 4 5 3 4 2
public class 一维差分 {
    public static void main(String[] args){
        //初始化数据
        Scanner in = new Scanner(System.in);
        int n = in.nextInt(), times = in.nextInt();
        int[] a = new int[n+2], b = new int[n+2];

        //导入原数组
        for (int i = 1; i<=n; i++) {a[i] = in.nextInt();}
        //计算差分数组,核心思想为前缀和逆运算,也就是b[i] = a[i]-a[i-1]
        for (int i = 1; i<=n; i++) {insert(b, i, i, a[i]);}

        //对差分数组某区域整体加减,核心思想为,l-r下标范围整体+c,那么就将(l)+c,(r+1)-c
        //这样在计算前缀和的时候达到自动进行全部加减,只影响区域内的数据
        while (times-- > 0) {
            int l = in.nextInt(), r = in.nextInt(), c = in.nextInt();
            insert(b, l, r, c);
        }
        
        //将b数组转为b的前缀和数组
        for (int i = 1; i<=n; i++) {b[i]+=b[i-1];}
        
        //输出结果
        for (int i = 1; i<=n; i++) {
            System.out.print(b[i]+" ");
            if (i==n) System.out.println();
        }
    }
    //insert,差分的模板运算
    //1.使用在差分数组初始化时
    //2.使用在进行对差分数组某区域整体加减时
    public static void insert(int[] b, int l, int r, int c){
        b[l] += c;
        b[r+1] -= c;
    }
}

声明:算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作记录和交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值