题目大意:
给出(n,n)(n,n)的矩阵,求从(1,1)(1,1)能看到多少个点。
InputInput
4
OutputOutput
9
思路:
数论。
这道题如果我们不看(2,2)(2,2),(2,1)(2,1),(1,2)(1,2)这三个点的话,就会发现,只有当gcd(x,y)=1gcd(x,y)=1时才能看见。而这道题如果沿着左下角到右上角的正方形对角线切分的话,又会发现左右两半时一样的。而“一半”又表明x<yx<y,所以如果要同时满足这两个条件,就只有φ(y)φ(y)个。再加上一开始省略的(2,2)(2,2),(2,1)(2,1),(1,2)(1,2),所以,这道题就是要我们求
∑i=2nφ(i)+3∑i=2nφ(i)+3
代码:
#include <cstdio>
#include <iostream>
using namespace std;
int p[100001],s,n;
int main()
{
cin>>n;
if (n==1) return printf("0")&0; //特判
n--;
for (int i=2;i<=n;i++)
p[i]=i; //初始化
for (int i=2;i<=n;i++)
{
if (p[i]==i)
for (int j=i;j<=n;j+=i)
p[j]=p[j]/i*(i-1);
s+=p[i]; //记录能看到的数量
}
cout<<s*2+3<<endl;
return 0;
}