【快速幂】洛谷_1226 快速幂||取余运算

本文介绍了一种利用快速幂算法求解a的b次方对p取余的问题,并给出了具体的实现代码。通过将指数翻倍和底数平方的方法,可以在O(log2b)的时间复杂度内高效地解决该问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

给出a,b,pa,b,pa,b,p三个数,求aba^{b}abppp取余的结果。

思路

数学中我们学过,an∗am=an+ma^n*a^m=a^{n+m}anam=an+m,于是我们可以利用这个性质得出an=an/2∗an/2=a2(n/2)a^n=a^{n/2}*a^{n/2}=a^{2(n/2)}an=an/2an/2=a2(n/2),那我们每次让指数翻倍,底数平方,就可以用O(log2b)O(log_2b)O(log2b)的时间复杂度求出,如果指数是奇数,就用另一个变量存未乘的情况。

代码

#include<cstdio>
long long a, b, p;
long long calc(long long a, long long b, long long p)
{
    long long r = 1;
    for (; b; b >>= 1)
    {
        if (b & 1) r = r * a % p;
        a = a * a % p;
    }
    return r % p;
}
int main()
{
    scanf("%lld %lld %lld",&a, &b, &p);
    printf("%lld^%lld mod %lld=%lld", a, b, p, calc(a, b, p));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值