这篇文章是本人的数学建模队友在建模过程中的一些心得,联系作者请留言,未经允许严禁转载
1、数学建模的定义
数学建模就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。举个最简单的例子,初中我们就做过关于小河渡船的问题,一条长为L的小河,船A从小河上游除法,船B从小河下游出发,流水流速是V0,小船船速是V1,问多长时间两船相遇?
上题是一个最简单的数学问题之一,因为它忽略了很多的因素,比如流水的速度会不会变化呀?流水速度怎样变化呀?考虑到船的位置,小河中间和先和边缘喝水流速会不会不同呀?船在不同的位置速度会不会也不一样啊?靠岸时离岸时速度比较低呀?等等问题。当你能把这些因素全部考虑进去并加以解决的时候,那你就是在做一个数学建模问题。
上面提到了一个很重要的关键词——因素。遇到问题首先要做的就是分析问题,而分析问题的关键在于找出和问题相关的所有因素,只有把所有的因素全部找到了,接下来你才能针对问题给出一个合理而且完整的答案。数学建模从生活来,但实际问题中的很多问题过于复杂,需要考虑很多因素,但一些次要因素往往被忽略用于简化问题,这时我们需要给一