(LeetCode 934)最短的桥 [简单DFS + BFS]

本文详细解析了在二维二进制数组中寻找连接两座岛的最短路径问题,通过深度优先搜索(DFS)和广度优先搜索(BFS)算法结合实现,旨在寻找将两个分离的岛屿连接起来所需的最小翻转次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

934. 最短的桥
在给定的二维二进制数组 A 中,存在两座岛。(岛是由四面相连的 1 形成的一个最大组。)

现在,我们可以将 0 变为 1,以使两座岛连接起来,变成一座岛。

返回必须翻转的 0 的最小数目。(可以保证答案至少是 1。)

示例 1:

输入:[[0,1],[1,0]]
输出:1
示例 2:

输入:[[0,1,0],[0,0,0],[0,0,1]]
输出:2
示例 3:

输入:[[1,1,1,1,1],[1,0,0,0,1],[1,0,1,0,1],[1,0,0,0,1],[1,1,1,1,1]]
输出:1

提示:
1 <= A.length = A[0].length <= 100
A[i][j] == 0 或 A[i][j] == 1

分析:
(1)首先找到某一个岛屿上的一点(x,y),利用点(x,y)和岛屿的连通性,DFS找出这个岛屿的所有边界,即距离该岛屿距离为1的所有‘0’的点,将这些边界点的坐标存入将队列中。

(2)根据队列中的信息,使用BFS不断进行扩展,直到找到另外一个岛屿(即到达某个未访问的‘1’)。

AC代码:

class Solution {
public:
    bool vis[110][110];
    int dx[4] = {-1,0,1,0};
    int dy[4] = {0,1,0,-1};
    int m, n;
    
    bool check(int x,int y)
    {
        return x>=0 && x< m && y>=0 && y<n;
    }
    
    void dfs(int x, int y,vector<vector<int>>& A, queue<int>& q)
    {
        vis[x][y] = 1;
     
        for(int k=0;k<4;k++)
        {
            int xx = x + dx[k];
            int yy = y + dy[k];
            if(check(xx,yy) && vis[xx][yy] == 0 && A[xx][yy] == 1)
            {
                dfs(xx,yy,A,q);
            }
            else if(check(xx,yy) && vis[xx][yy] == 0 && A[xx][yy] == 0)
            {
                q.push(xx);
                q.push(yy);
                q.push(1);
            }
        }
    }
    
    int shortestBridge(vector<vector<int>>& A) {
        queue<int> q;
        m = A.size();
        n = A[0].size();
        memset(vis,0,sizeof(vis));
        int x, y;
        for(int i=0;i<m;i++)
        {
            for(int j=0;j<n;j++)
            {
                if(A[i][j] == 1)
                {
                    x = i;
                    y = j;
                    break;
                } 
            }
        }
        dfs(x,y,A,q);
        
        int len = 0;
        while(!q.empty())
        {
            x = q.front();
            q.pop();
            y = q.front();
            q.pop();
            len = q.front();
            q.pop();
            
            if(A[x][y] == 1)
            {
                return len - 1;
            }
            
            for(int k=0;k<4;k++)
            {
                int xx = x + dx[k];
                int yy = y + dy[k];
                if(check(xx,yy) && vis[xx][yy] == 0)
                {
                    vis[xx][yy] = 1;
                    q.push(xx);
                    q.push(yy);
                    q.push(len + 1);
                }
            }
            
        }
        return -1;
    }
};
### 解决方案概述 LeetCode 934 题目 "Shortest Bridge" 的解决方案通常采用深度优先搜索 (DFS) 和广度优先搜索 (BFS) 组合的方法来解决。先通过 DFS 找到第一个岛屿并将该岛屿的所有位置标记,再利用 BFS 来找到到达第二个岛屿的路径。 #### 使用 DFS 寻找并标记第一个岛屿 为了寻找并标记第一个遇到的岛屿,在遍历过程中可以将访问过的陆地格子('1')改为其他字符(例如 'A'),以便区分已处理的部分: ```java private void dfs(char[][] grid, int i, int j, Queue<int[]> queue) { if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] != '1') return; grid[i][j] = 'A'; queue.offer(new int[]{i,j}); int[] directionX = {-1, 0, 1, 0}; int[] directionY = {0, 1, 0, -1}; for(int d = 0; d < 4; ++d){ dfs(grid,i + directionX[d],j + directionY[d],queue); } } ``` 此部分代码实现了对首个发现岛屿的完全探索,并将其坐标加入队列用于后续操作[^2]。 #### 应用 BFS 计算至另一岛屿的距离 当完成上述过程后,则可启动 BFS 进行层次化扩展直到触及另一个未被改变过状态('1')的新岛为止;每次移动都会增加距离计数器直至成功抵达目标或穷尽所有可能性: ```java public int shortestBridge(int[][] A) { char[][] grid = new char[A.length][]; for (int r = 0; r < A.length; ++r) grid[r] = String.valueOf(A[r]).toCharArray(); Queue<int[]> queue = new LinkedList<>(); boolean foundIslandOne = false; // Locate and mark the first island with DFS. outer: for (int i = 0; !foundIslandOne && i < grid.length; ++i) for (int j = 0; !foundIslandOne && j < grid[0].length; ++j) if (grid[i][j] == '1') { dfs(grid, i, j, queue); foundIslandOne = true; break outer; } int steps = 0; while (!queue.isEmpty()) { for (int sz = queue.size(); sz > 0; --sz) { int[] curr = queue.poll(); int[] dx = {-1, 0, 1, 0}, dy = {0, 1, 0, -1}; for (int k = 0; k < 4; ++k) { int nx = curr[0] + dx[k], ny = curr[1] + dy[k]; if (nx >= 0 && nx < grid.length && ny >= 0 && ny < grid[nx].length && grid[nx][ny] != 'A') { if (grid[nx][ny] == '1') return steps; grid[nx][ny] = 'A'; // Mark as visited. queue.add(new int[]{nx, ny}); } } } ++steps; } throw null; // Unreachable code because problem guarantees at least one solution exists. } ``` 这段完整的程序展示了如何结合 DFSBFS 技术有效地解决问题实例中的梁构建挑战。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值