小结-矩量母函数(moment-generating function)(10/15/2020)

本文详细介绍了矩量母函数(MGF)的概念及其在统计学中的作用,阐述了如何通过MGF求解矩(moment),并解释了使用MGF简化计算的原因。通过一个指数分布的例子,展示了利用MGF计算高阶矩的便利性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前一直不是很理解moment generating function(MGF)。今天终于狠下心挖一挖MGF,在这里做一个小结,也是终于是帮我搞懂了moment和MGF的作用。大家如果也不明白的可以抽几分钟看看这篇文章。

首先,什么是moment?

moment在统计学中表示的是期望,比如E(X),E(X2),…,E(X),E(X^2),…,EXEX2 分别表示某个分布的first moment,second moment,…

那么这些期望值在统计学中有什么运用呢,比较简单的,大家都知道first moment表达的是某种分布的期望,而second moment某种程度则能够反映该分布的variance,因为我们有σ2=E(X2)−E(X)2\sigma^2 = E(X^2)- E(X)^2σ2=EX2EX2。但是third和fourth moment同样也是反映分布特性的重要参数,比如third moment反映的是该分布的不对称性(asymmetry),也可以说成是倾斜度?(skewness),表达成公式是skewness=E((x−μ)3)/σ3skewness = E((x-\mu)^3)/\sigma^3skewness=Exμ3/σ3;fourth moment反映的则是峰度(kurtosis:how heavy its tails are),kurtosis=E((x−μ)4)/σ4kurtosis = E((x-\mu)^4)/\sigma^4kurtosis=Exμ4/σ4。所以对我们来说,momnet是反映某样本分布很重要的参数。

然后我们接着看什么是moment generating function(MGF),我理解的是MGF是为了构建一个帮助大家求解moment的一个工具式的函数(像它的名字一样,to generate moment),首先我们看momnet的求法: E(Xn)=∫−∞∞πn×pdf(x)dxE(X^n) =\int_{-\infty}^{\infty}{\pi^n}\times pdf(x) dxE(Xn)=πn×pdf(x)dx

而MGF是: MGF(t)=E(etx)=MGF(t) = E(e^{tx}) = {}MGF(t)=E(etx)=
MGF(t)=E(etx)={ ∑etx×p(x),x:discrete;p(x):pmf∫etx×f(x),x:continous;f(x):pdf MGF(t)=E(e^{tx})=\left\{ \begin{aligned} & \sum e^{tx}\times p(x), x: discrete; p(x): pmf \\ & \int e^{tx}\times f(x), x: continous; f(x): pdf \\ \end{aligned} \right. MGF(t)=E(etx)=etx×p(

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值